RESUMO
On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
Assuntos
Proteínas Quinases Ativadas por AMP , Hiperlipidemias , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , LDL-Colesterol , Fermentação , Aquaporina 2/metabolismo , Metabolismo dos Lipídeos , Fígado , Lipídeos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/genética , Trifosfato de Adenosina/farmacologia , Dieta Hiperlipídica/efeitos adversosRESUMO
OBJECTIVE: To detect the chemical constituents in Jianqu samples under different fermentated states by using UPLC-QTOF-MS/MS technology, to conduct preliminary analyses, and to establish an HPLC method for the simultaneous determination of hesperidin and naringenin in Jianqu, and the variation of the two components during fermentation were compared. METHODS: Waters ACQUITYTM UPLC HSST3 column (2.1 mm × 100 mm, 1.8 µm) was used; the mobile phase was 0.1% formic acid aqueous solution (A)-0.1% formic acid acetonitrile (B); The flow rate was 0.4 mL·min-1 with gradient elution; the column temperature was 45 °C; injection volume was 5 µL. The mass spectra of the samples were collected by negative ion mode under the electrospray ion source, and the data were screened and matched by UNIFI software. Hypersil gold C18 column (100 mm × 2.1 mm, 1.9 µm) was used; the mobile phase was acetonitrile (A)-0.1% acetic acid (B);; the flow rate with gradient elution was 0.3 mL·min-1; the column temperature was 30 °C; the injection volume was 2 µL. The content changes of hesperetin and naringenin in Jianqu at different fermentation time were detected. RESULTS: A total of 54 compounds were identified, including flavonoids, amino acids, organic acids, terpenoids, coumarins, lignans, and other compounds. Under the selected HPLC conditions, the linear relationship between hesperidin and naringenin was discovered (r2 = 0.9996). The content of hesperidin and naringenin changed significantly in the whole fermentation process. The highest concentration of content was observed at 36 h of fermentation and then decreased to varying degrees. CONCLUSION: This experiment can effectively identify various chemical components in Jianqu during different fermentation periods, and determine the content of the characteristic components, so as to provide a scientific basis for further study of Jianqu fermentation processing technology as well as a sound pharmacodynamic material basis.
Assuntos
Medicamentos de Ervas Chinesas , Hesperidina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Hesperidina/análise , Medicina Tradicional Chinesa , Fermentação , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta PressãoRESUMO
This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22-42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22-42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition.
RESUMO
Recent advances in DNA/RNA sequencing have made it possible to identify new targets rapidly and to repurpose approved drugs for treating heterogeneous diseases by the 'precise' targeting of individualized disease modules. In this study, we develop a Genome-wide Positioning Systems network (GPSnet) algorithm for drug repurposing by specifically targeting disease modules derived from individual patient's DNA and RNA sequencing profiles mapped to the human protein-protein interactome network. We investigate whole-exome sequencing and transcriptome profiles from ~5,000 patients across 15 cancer types from The Cancer Genome Atlas. We show that GPSnet-predicted disease modules can predict drug responses and prioritize new indications for 140 approved drugs. Importantly, we experimentally validate that an approved cardiac arrhythmia and heart failure drug, ouabain, shows potential antitumor activities in lung adenocarcinoma by uniquely targeting a HIF1α/LEO1-mediated cell metabolism pathway. In summary, GPSnet offers a network-based, in silico drug repurposing framework for more efficacious therapeutic selections.
Assuntos
Algoritmos , Reposicionamento de Medicamentos/métodos , Biologia de Sistemas/métodos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Simulação por Computador , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Redes Reguladoras de Genes/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Saúde Holística , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Ouabaína/farmacologia , Ouabaína/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
To reveal the transformation and attribution of drug properties in Galla Chinesis fermented Baiyaojian by studying the effect of Galla Chinesis and Baiyaojian on cold and heat syndrome rats. Euthyrox was used to induce the hyperthyrosis model,ice water stimulation was used to induce the cold syndrome model,and different concentrations of Galla Chinesis and Baiyaojian water decoction were administrated by gavage for 15 d continuously. Symptom indexes were evaluated,content of pyruvic acid( PA),ATPase activity in liver and contents of DA,T4,cAMP,5-HT,NE,17-OHCS,TRH and TSH in serum were assayed by enzyme linked immunosorbent assay and spectrophotometry. The rectal temperature,water consumption and body weight of heat syndrome rats in model group were increased,cAMP,NE,17-OHCS,TRH and PA were increased,TSH,Na-K ATPase and Ca-Mg ATPase were increased significantly( P<0. 01),while 5-HT was decreased,compared with those of the blank group( P< 0. 05),the contents of T4,DA,NE,TSH,TRH,cAMP and 17-OHCS were decreased significantly( P<0. 01),PA and Ca-Mg ATPase in WG and BG groups were decreased compared with those of the model group( P<0. 05),and the Galla Chinesis content of WG group was lower than that of BG group,while the contents of 5-HT in WG and BG groups were increased,and the Galla Chinesis content of WG group was higher than that of BG group,with no significant difference of viscera index between heat syndrome rats in blank group,model group and drug groups. The rectal temperature,water consumption and body weight of cold syndrome rats in model group were decreased,DA,T4,cAMP,NE,17-OHCS,TRH,TSH,PA,Na-K ATPase and Ca-Mg ATPase of rats in model group were decreased,whereas 5-HT was increased compared with those of the blank group( P<0. 05),the indexes of heart,lung and kidney were significantly higher than those in the blank group( P<0. 05). Both Galla Chinesis and Baiyaojian can significantly alleviate the symptoms of heat syndrome rats caused by levothyroxine sodium. Galla Chinesis has a better effect than Baiyaojian,but cannot alleviate the symptoms of cold syndrome caused by ice water stimulation,suggestting that the decoction of Galla Chinesis and Baiyaojian are both cold,but Galla Chinesis is colder than Baiyaojian. Cold property in Galla Chinesis fermented Baiyaojian can be relieved. In clinical application,the property of " slight cold" is more accurate than " neutral property" for Baiyaojian.