Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 199: 107032, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061594

RESUMO

Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.


Assuntos
Flavanonas , Neoplasias , Humanos , Microambiente Tumoral , Células Endoteliais/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia
2.
Cancer Pathog Ther ; 1(2): 98-110, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328407

RESUMO

Background: Colorectal cancer (CRC) is the third most common malignancy and the second deadliest cancer worldwide. Metastasis to the liver, the most common metastatic site in CRC, is the leading cause of death in patients with CRC. Hyperlipidemia, which is common in patients with CRC, promotes CRC progression and metastasis. Hyperlipidemia is commonly observed in obese patients and is often induced by hypernutrition. The underlying mechanism of hypernutrition-induced hyperlipidemia in promoting CRC liver metastasis remains unclear, and there is an unmet need for effective and low-cost treatments for patients with CRC. Methods: A mouse cecum orthotopic CRC model combined with high-fat diet (HFD) feeding, was established to mimic liver metastasis in CRC in obese patients. The effects of Dachaihu decoction (DCHD), a traditional herbal medicine used to treat inflammation and nonalcoholic fatty liver disease, and of the conventional prescription medicine obeticholic acid (OCA) were evaluated. HFD-induced obesity, hyperlipidemia, and CRC liver metastasis were assessed, along with the histology and pathology of the liver and intestine and the expression of metabolic genes in these tissues. The effects of DCHD and OCA on HFD-induced outcomes were evaluated, and human umbilical vein endothelial cells (HUVECs) treated with bile acids (BAs) and DCHD were used to study the underlying mechanisms in vitro. Results: HFD-mediated obesity and hyperlipidemia promoted CRC metastasis, accompanied by disruption of the gut vascular barrier (GVB) and altered bile acid (BA) metabolism. DCHD decreased HFD-induced hyperlipidemia and liver metastasis in CRC, improving overall survival. Those effects of DCHD were equivalent to or better than those of OCA. DCHD regulated the expression of genes of BA metabolism and tight junctions (TJ) to prevent HFD-induced disruption of the GVB. In HUVECs, DCHD prevented the increases in intracellular Ca2+ and accumulation of reactive oxygen species induced by primary conjugated BAs, assisting in the maintenance of redox homeostasis and preventing the downregulation of TJ proteins, thereby maintaining the integrity of the endothelial barrier. Conclusions: The data provide a link between hypernutrition and GVB disruption, which contributes to high liver metastasis in patients with CRC. DCHD may represent a novel therapy in CRC, and targeting abnormal lipid metabolism could be a promising therapeutic strategy for avoiding hypernutrition-associated CRC metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA