RESUMO
INTRODUCTION: Recent clinical studies have implicated prostate inflammation and fibrosis in the development of bladder outlet obstruction and lower urinary tract symptoms (LUTS). Studies utilizing rodent models, including work in our laboratory, have shown prostate fibrosis to occur as a consequence of inflammation. However, the relationship between collagen content and inflammation in human tissue samples obtained from surgical treatment of benign prostatic hypererplasia (BPH)/LUTS has not to our knowledge been previously examined. METHODS: Prostate tissue specimens from 53 patients (ages 47-88, mean 65.1) treated by open simple prostatectomy or transurethral resection of the prostate for BPH/LUTS were stained to quantitatively assess prostate inflammation and collagen content. Patients with prostate cancer present in greater than 5% of the surgical specimen were excluded. Prostate volume was determined from pelvic CT scan obtained within 2 years of surgery. RESULTS: Analysis of the data showed that inflammation was inversely correlated with collagen content (r = -0.28, p = 0.04). In men with prostates less than 75 cm3 inflammation increases and collagen content decreases with prostate volume (p = 0.002 and p = 0.03, respectively) while in men with prostate volume over 75 cm3 inflammation decreases and collagen content increases with prostate volume (p = 0.30 and p = 0.005, respectively). CONCLUSIONS: Our data do not support the assumed positive association of prostate inflammation with collagen content. Coordinated analysis of scatter plots of inflammation and collagen content with prostate volume revealed a subset of prostates with volumes >50 cm3 prostate characterized by intense inflammation and low collagen content and it is this subgroup that appears most responsible for the inverse correlation of inflammation and collagen.
Assuntos
Sintomas do Trato Urinário Inferior , Hiperplasia Prostática , Prostatite , Ressecção Transuretral da Próstata , Masculino , Humanos , Hiperplasia Prostática/patologia , Colágeno , Inflamação/patologia , Sintomas do Trato Urinário Inferior/etiologia , Sintomas do Trato Urinário Inferior/patologia , FibroseRESUMO
Atherosclerosis (AS) is the most common causes of cardiovascular disease characterized by the formation of atherosclerotic plaques in the arterial wall, and it has become a dominant public health problem that seriously threaten people worldwide. Autophagy is a cellular self-catabolism process, which is critical to protect cellular homeostasis against harmful conditions. Emerging evidence suggest that dysregulated autophagy is involved in the development of AS. Therefore, pharmacological interventions have been developed to inhibit the AS via autophagy induction. Among various AS treating methods, herbal medicines and natural products have been applied as effective complementary and alternative medicines to ameliorate AS and its associated cardiovascular disease. Recently, mounting evidence revealed that natural bioactive compounds from herbs and natural products could induce autophagy to suppress the occurrence and development of AS, by promoting cholesterol efflux, reducing plaque inflammation, and inhibiting apoptosis or senescence. In the present review, we highlight recent findings regarding possible effects and molecular mechanism of natural compounds in autophagy-targeted mitigation of atherosclerosis, aiming to provide new potential therapeutic strategies for the atherosclerosis treatment preclinically and clinically.
Assuntos
Aterosclerose , Produtos Biológicos , Doenças Cardiovasculares , Plantas Medicinais , Placa Aterosclerótica , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Autofagia , Aterosclerose/tratamento farmacológico , Colesterol/farmacologiaRESUMO
BACKGROUND: Mulberry leaves are the dried leaves of Morus alba L., flavonoids from mulberry leaves (MLF) has showed regulatory effect on abnormal lipid metabolism, but the regulatory mechanism of MLF on cholesterol metabolism is still missing. This study was designed to investigate the effect of MLF and its active metabolite quercetin on regulating cholesterol disorders. METHODS: The mechanism of MLF on alleviating liver injury and regulating cholesterol was examined in dyslipidemic SD rats. The regulatory mechanism of quercetin for cholesterol disorders have also been detected through lipid laden HepG2 cell model. RESULTS: Our results showed that MLF significantly inhibited lipid accumulation and alleviate hepatic injury in NAFLD rat model. The hepatic expression level of SREBP2, HMGCR and miR-33a were significantly down-regulated, while CYP7A1 was induced by MLF treatment. In vitro, Quercetin significantly decreased lipid accumulation in HepG2 cells. Mechanistically, quercetin could inhibit the mRNA and protein expression level of SREBP2 and HMGCR with or without LDL treatment. In addition, quercetin could also reduce the LXRß while induced SR-BI mRNA expression. CONCLUSION: Our findings indicate that MLF and quercetin could reduce the excessive cholesterol accumulation in vivo and in vitro. These cholesterol-regulating phenomenon might attribute to its effect on down-regulating the expression of lipid-related markers such as SREBP2 and HMGCR, which may exert a protective role in the NAFLD treatment.
Assuntos
Colesterol/metabolismo , Flavonoides/farmacologia , Morus , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Animais , China , Modelos Animais de Doenças , Regulação para Baixo , Células Hep G2 , Humanos , Masculino , Ácido Orótico , Folhas de Planta , Ratos , Ratos Sprague-DawleyRESUMO
Periodontitis is an infectious disease whereby the chronic inflammatory process of the periodontium stimulated by bacterial products induces specific host cell responses. The activation of the host cell immune system upregulates the production of inflammatory mediators, comprising cytokines and proteolytic enzymes, which contribute to inflammation and bone destruction. It has been well known that periodontitis is related to systemic inflammation which links to numerous systemic diseases, including diabetes and arteriosclerosis. Furthermore, periodontitis has been reported in association with neurodegenerative diseases such as Alzheimer's disease (AD) in the brain. Regarding immune responses and inflammation, cathepsin B (CatB) plays pivotal role for the induction of IL-1ß, cathepsin K- (CatK-) dependent active toll-like receptor 9 (TLR9) signaling, and cathepsin S (CatS) which involves in regulating both TLR signaling and maturation of the MHC class II complex. Notably, both the production and proteolytic activities of cathepsins are upregulated in chronic inflammatory diseases, including periodontitis. In the present review, we focus on the roles of cathepsins in the innate and adaptive immune responses within periodontitis. We believe that understanding the roles of cathepsins in the immune responses in periodontitis would help to elucidate the therapeutic strategies of periodontitis, thus benefit for reduction of systemic diseases as well as neurodegenerative diseases in the global aging society.
RESUMO
Rosmarinus officinalis Linn. is a kind of medicinal and edible homologous plant, which is popular in the Mediterranean region with a significant effect on mind tranquilization, anti-oxidation, and metabolic improvement. However, the hypolipidemic effects and mechanism of rosemary ethanol extract (RO) and their metabolites are less known. In this study, the hypolipidemic effects of RO and its active compounds were clarified. The results showed that RO, rosmarinic acid (RA) and carnosic acid (CA) significantly reduced the contents of liver triglyceride (TG), total cholesterol (TC), free fatty acids (FFA) and improved cell hypertrophy, vacuolation, and cell necrosis in the liver of orotic acid induced non-alcoholic fatty liver disease (NAFLD) model rats. The mechanism and related pathways of RO and its main metabolites against lipid disorder were related to the up-regulation of the phosphorylation of adenosine 5'-monophosphate(AMP)-activated protein kinase (AMPK) and the inhibition of the sterol regulatory element binding protein-1c (SREBP-1c) cracking into the nucleus, following the down-regulation of fatty acid synthesis. In conclusion, our study demonstrates that RA and CA are active substances of RO, and provides scientific evidence to support functional food product development for improving NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ácido Orótico/toxicidade , Extratos Vegetais/farmacologia , Rosmarinus/química , Abietanos/química , Abietanos/farmacologia , Animais , Cinamatos/química , Cinamatos/farmacologia , Depsídeos/química , Depsídeos/farmacologia , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Ácido RosmarínicoRESUMO
Scutellaria baicalensis has been reported to improve the lipid metabolism of high-fat diet-induced liver dysfunction, but direct evidence is rare. This study aimed to explore the effects and mechanisms of S. baicalensis and its major constituent baicalin on hepatic lipotoxicity. KK-Ay mice and orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) rats were used to evaluate lipid metabolism regulatory effects. Sodium oleate-induced triglyceride-accumulated HepG2 cells were used for the mechanism study, pretreated with or without compound C or STO-609 or transfected with liver kinase B1 (LKB1) siRNA. In KK-Ay mice, S. baicalensis extract showed a decreased effect on serum and hepatic triglycerides, total cholesterols, and free fatty acid (FFA) levels after 8 weeks of treatment. In OA-induced NAFLD rats, 18 days of treatment with baicalin significantly inhibited hepatic lipid accumulation, attenuating hepatocyte hypertrophy, vacuolization and necrosis. S. baicalensis and baicalin treatment significantly suppressed the sterol regulatory element binding protein-1c (SREBP-1c) transcriptional program with downregulation of gene and protein expression of SREBP-1c (both precursor and mature fraction) and acetyl-CoA carboxylase, fatty acid synthase and stearoyl-CoA desaturase, and upregulation of AMP-activated protein kinase (AMPK), carnitine palmitoyl transferase 1 and nuclear respiratory factor 2 in the liver. Furthermore, activation of AMPK by baicalin was observed to be relative to the increase in phosphorylation of calmodulin-dependent protein kinase kinase. Taken together, S. baicalensis conferred preventive effects against FFA-induced lipotoxicity through the AMPK-mediated SREBP signaling pathway.
Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/química , Scutellaria baicalensis/química , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Dieta Hiperlipídica , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.
Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Alimento Funcional , Glucose/metabolismo , Fígado/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Homeostase/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacosRESUMO
Three new compounds, apetalumosides C1 (1), D (2), and 1-thio--d-glucopyranosyl(1â1)-1-thio-α-d-glucopyranoside (3), together with twenty-two known ones (4-25) were obtained from the seeds of Lepidium apetalum Willd. Among the known isolates, 5-8, 10-13, 16-20, and 25 were obtained from the genus for the first time; 4, 14, 15, and 21-24 were isolated from the species for the first time. Meanwhile, the NMR data of 16 was first reported here. Their structures were determined by means of chemical and spectroscopic methods. On the other hand, their inhibitory effects on sodium oleate-induced triglyceride (TG) overloading in HepG2 cells were evaluated. As a result, two new compounds (1 and 2), together with known isolates 7-11, 13, 14, 16-18, 20, 21, and 25 possessed significant inhibitory effects in the cells.
Assuntos
Lepidium/química , Extratos Vegetais/química , Sementes/química , Triglicerídeos/metabolismo , Células Hep G2/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ácido Oleico/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Sixteen flavonoids (1-16) including two new ones, named officinoflavonosides A (1) and B (2) were obtained from the aerial parts of Rosmarinus officinalis. Among the known ones, 6, 10, and 13 were isolated from the rosmarinus genus for the first time. Their structures were elucidated by chemical and spectroscopic methods. Moreover, the effects on sodium oleate-induced triglyceride accumulation (TG) in HepG2 cells of the above-mentioned compounds and 16 other isolates (17-32) reported previously to have been obtained in the plant were analyzed. Results show that eight kinds of flavonoids (compounds 1, 2, 3, 6-9 and 11) and seven kinds of other known isolates (compounds 17-20, 23, 26 and 31) possessed significant inhibitory effects on intracellular TG content in HepG2 cells. Among them, the activities of compounds 1 and 20 were comparable to that of orlistat, which suggested that these compounds in this plant might be involved in lipid metabolism.