Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 853-857, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621892

RESUMO

Gypsum Fibrosum, as a classic heat-clearing medicine, is widely used in the clinical practice of traditional Chinese medicine(TCM). However, debates exist about the material basis and mechanism of its efficacy. Therefore, this paper reviewed the recent research progress in the heat-clearing effect and mechanism of Gypsum Fibrosum and discussed the material basis for the heat-clearing effect of this medicine. Ca~(2+) may inhibit the upward movement of temperature set point by regulating the Na~+/Ca~(2+) level in the heat-regulating center. Moreover, trace elements may inhibit the rise of body temperature by regulating the immune system, promoting the absorption of Ca~(2+), and affecting the synthesis of prostaglandin E2(PGE2). This review aims to enrich the knowledge about the mechanism of Gypsum Fibrosum in clearing heat and provides a scientific basis for the clinical application and further development of Gypsum Fibrosum.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Sulfato de Cálcio/farmacologia , Temperatura Alta , Medicina Tradicional Chinesa
2.
Phytomedicine ; 123: 155192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951148

RESUMO

BACKGROUND: Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE: The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS: Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS: HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-ß, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/ß, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION: Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.


Assuntos
Aterosclerose , Compostos Azo , Medicamentos de Ervas Chinesas , Lipoproteínas , Masculino , Camundongos , Ratos , Animais , Receptores X do Fígado/metabolismo , Colesterol/metabolismo , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Receptores Nucleares Órfãos/uso terapêutico , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Camundongos Knockout , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA