Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6191-6199, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114226

RESUMO

Simiao Yong'an Decoction is a classic prescription for treating gangrene. Modern medical evidence has proven that Si-miao Yong'an Decoction has therapeutic effects on atherosclerosis(AS), vascular occlusion angeitides, and hypertension, while its pharmacodynamic mechanism remains unclear. The evidence of network pharmacology, molecular docking, literature review, and our previous study suggests that luteolin and kaempferol are two major flavonoids in Simiao Yong'an Decoction and can inhibit macrophage inflammation and exert anti-AS effects. However, due to lack of the metabolism studies in vivo, little is known about the metabolic characteristics of luteolin and kaempferol. This study employed ultra-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS/MS) and relevant software to identify the metabolites and metabolic pathways of luteolin and kaempferol in rat plasma, urine, and feces, after oral administration of luteolin and kaempferol, respectively. After the administration of luteolin, 10, 11, and 3 metabolites of luteolin were detected in the plasma, urine, and feces, respectively. After the administration of kaempferol, 9, 3, and 1 metabolites of kaempferol were detected in the plasma, urine, and feces, respectively. The metabolic pathways mainly involved methylation, glucuronidation, and sulfation. This study enriches the knowledge about the pharmacological mechanism of luteolin and kaempferol and supplies a reference for revealing the metabolic process of other flavonoids in Simiao Yong'an Decoction, which is of great significance for elucidating the pharmacological effects and effective substances of this decoction in vivo.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Luteolina/análise , Medicamentos de Ervas Chinesas/química , Quempferóis/análise , Cromatografia Líquida de Alta Pressão/métodos , Simulação de Acoplamento Molecular
2.
Cell Rep ; 42(2): 112102, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36774548

RESUMO

Nutritional symbionts influence host reproduction, but the underlying molecular mechanisms are largely unclear. We previously found that the bacteriocyte symbiont Hamiltonella impacts the sex ratio of the whitefly Bemisia tabaci. Hamiltonella synthesizes folate by cooperation with the whitefly. Folate deficiency by Hamiltonella elimination or whitefly gene silencing distorted whitefly sex ratio, and folate supplementation restored the sex ratio. Hamiltonella deficiency or gene silencing altered histone H3 lysine 9 trimethylation (H3K9me3) level, which was restored by folate supplementation. Genome-wide chromatin immunoprecipitation-seq analysis of H3K9me3 indicated mitochondrial dysfunction in symbiont-deficient whiteflies. Hamiltonella deficiency compromised mitochondrial quality of whitefly ovaries. Repressing ovary mitochondrial function led to distorted whitefly sex ratio. These findings indicate that the symbiont-derived folate regulates host histone methylation modifications, which thereby impacts ovary mitochondrial function, and finally determines host sex ratio. Our study suggests that a nutritional symbiont can regulate animal reproduction in a way that differs from reproductive manipulators.


Assuntos
Hemípteros , Animais , Feminino , Hemípteros/genética , Razão de Masculinidade , Simbiose/genética , Enterobacteriaceae/genética , Ácido Fólico
3.
Zhongguo Zhen Jiu ; 42(4): 413-8, 2022 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-35403401

RESUMO

OBJECTIVE: To observe the effect of moxibustion at oppositely-located points "Mingmen" (GV 4) and "Shenque" (CV 8) on the motor function of the hind limbs and bladder function in rats with neurogenic bladder after suprasacral spinal cord injury (SCI), so as to explore the effect of this therapy on bladder tissue apoptosis mediated by endoplasmic reticulum stress pathway. METHODS: Twenty-eight female Wistar rats were randomly divided into a sham-operation group (8 rats) and a model establishment group (20 rats). Using the modified Allen's method, the spinal cord of T10 segment was injured to establish a neurogenic bladder model in the model establishment group. Sixteen rats were modeled successfully and then divided into a model group (8 rats) and a moxibustion group (8 rats). In the moxibustion group, 2 h after consciousness regaining from modeling anesthesia, moxibustion was exerted at "Shenque" (CV 8) and "Mingmen" (GV 4), 2 cones at each acupoint in one intervention. The intervention was administered once every two days and 5-time intervention was required totally. After intervention, Basso, Beattie and Bresnahan locomotor rating scale (BBB) score for the motor function of the hind limbs, and the urodynamics indexes (maximum bladder capacity, urine leakage pressure and bladder compliance) were compared among groups. HE staining method was adopted to observe the morphological changes of bladder tissue. With Western blot method and real-time PCR assay, the protein and mRNA expressions of the endoplasmic reticulum stress-related genes (glucose- regulated protein 78 [GRP78], activating transcription factor 4 [ATF4] and cysteinyl aspartate specific proteinase-12 [Caspase-12]) were determined. RESULTS: The transitional epithelial cells were arranged irregularly, the bladder wall was getting thinner, and the cellular vacuolar degeneration and neutrophil infiltration were found in the model group. Whereas, compared with the model group, in the moxibustion group, the arrangement of transitional epithelial cells was clear and continuous in layers, the cellular vacuolar degeneration was mild and the infiltration presented in a small amount of neutrophil granulocytes. Compared with the sham-operation group, in the model group, the BBB score was reduced (P<0.01), the maximum bladder capacity and bladder compliance were increased (P<0.01), and the protein expression levels of GRP78, ATF4 and Caspase-12, as well as mRNA expressions were all increased (P<0.01). In comparison with the model group, in the moxibustion group, BBB score was increased (P<0.01), the maximum bladder capacity and bladder compliance were decreased (P<0.01), and the protein and mRNA expression levels of GRP78, ATF4 and Caspase-12 were all decreased (P<0.01). CONCLUSION: Moxibustion at the "oppositely-located points" improves the urination function, alleviate urine retention in neurogenic bladder rats after spinal cord injury. The underlying mechanism may be related to the down-regulation of the expressions of GRP78, ATF4 and Caspase-12 in the endoplasmic reticulum stress pathway of the bladder tissues, and thus to alleviate the apoptosis of bladder tissue.


Assuntos
Eletroacupuntura , Moxibustão , Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Animais , Caspase 12/genética , Estresse do Retículo Endoplasmático , Feminino , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Bexiga Urinaria Neurogênica/terapia
4.
Appl Environ Microbiol ; 88(3): e0208921, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818107

RESUMO

Nutritional symbionts are restricted to specialized host cells called bacteriocytes in various insect orders. These symbionts can provide essential nutrients to the host. However, the cellular mechanisms underlying the regulation of these insect-symbiont metabolic associations remain largely unclear. The whitefly Bemisia tabaci MEAM1 hosts "Candidatus Portiera aleyrodidarum" (here, "Ca. Portiera") and "Candidatus Hamiltonella defensa" (here, "Ca. Hamiltonella") bacteria in the same bacteriocyte. In this study, the induction of autophagy by chemical treatment and gene silencing decreased symbiont titers and essential amino acid (EAA) and B vitamin contents. In contrast, the repression of autophagy in bacteriocytes via Atg8 silencing increased symbiont titers, and amino acid and B vitamin contents. Furthermore, dietary supplementation with non-EAAs or B vitamins alleviated autophagy in whitefly bacteriocytes, elevated TOR (target of rapamycin) expression, and increased symbiont titers. TOR silencing restored symbiont titers in whiteflies after dietary supplementation with B vitamins. These data suggest that "Ca. Portiera" and "Ca. Hamiltonella" evade autophagy of the whitefly bacteriocytes by activating the TOR pathway via providing essential nutrients. Taken together, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. Therefore, this study reveals that autophagy is an important cellular basis for bacteriocyte evolution and symbiosis persistence in whiteflies. The whitefly symbiosis unravels the interactions between cellular and metabolic functions of bacteriocytes. IMPORTANCE Nutritional symbionts, which are restricted to specialized host cells called bacteriocytes, can provide essential nutrients for many hosts. However, the cellular mechanisms of regulation of animal-symbiont metabolic associations have been largely unexplored. Here, using the whitefly-"Ca. Portiera"/"Ca. Hamiltonella" endosymbiosis, we demonstrate autophagy regulates the symbiont titers and thereby alters the essential amino acid and B vitamin contents. For persistence in the whitefly bacteriocytes, "Ca. Portiera" and "Ca. Hamiltonella" alleviate autophagy by activating the TOR (target of rapamycin) pathway through providing essential nutrients. Therefore, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. This study also provides insight into the cellular basis of bacteriocyte evolution and symbiosis persistence in the whitefly. The mechanisms underlying the role of autophagy in whitefly symbiosis could be widespread in many insect nutritional symbioses. These findings provide a new avenue for whitefly control via regulating autophagy in the future.


Assuntos
Halomonadaceae , Hemípteros , Complexo Vitamínico B , Animais , Autofagia , Halomonadaceae/genética , Hemípteros/microbiologia , Simbiose/genética , Complexo Vitamínico B/metabolismo
5.
ISME J ; 15(6): 1655-1667, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33432136

RESUMO

Intracellular symbionts in insects often have reduced genomes. Host acquisition of genes from bacteria is an important adaptation that supports symbionts. However, the function of horizontally transferred genes in insect symbiosis remains largely unclear. The primary symbiont Portiera housed in bacteriocytes lacks pantothenate synthesis genes: panB and panC, which is presumably complemented by a fused gene panB-panC (hereafter panBC) horizontally transferred from bacteria in Bemisia tabaci MEAM1. We found panBC in many laboratory cultures, and species of B. tabaci shares a common evolutionary origin. We demonstrated that complementation with whitefly panBC rescued E. coli pantothenate gene knockout mutants. Portiera elimination decreased the pantothenate level and PanBC abundance in bacteriocytes, and reduced whitefly survival and fecundity. Silencing PanBC decreased the Portiera titer, reduced the pantothenate level, and decreased whitefly survival and fecundity. Supplementation with pantothenate restored the symbiont titer, PanBC level, and fitness of RNAi whiteflies. These data suggest that pantothenate synthesis requires cooperation and coordination of whitefly PanBC expression and Portiera. This host-symbiont co-regulation was mediated by the pantothenate level. Our findings demonstrated that pantothenate production, by the cooperation of a horizontally acquired, fused bacteria gene and Portiera, facilitates the coordination of whitefly and symbiont fitness. Thus, this study extends our understanding on the basis of complex host-symbiont interactions.


Assuntos
Hemípteros , Complexo Vitamínico B , Animais , Bactérias/genética , Escherichia coli , Simbiose
6.
ISME J ; 14(10): 2542-2553, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32572143

RESUMO

Insect symbionts are widespread in nature and lateral gene transfer is prevalent in insect symbiosis. However, the function of horizontally transferred genes (HTGs) in insect symbiosis remains speculative, including the mechanism that enables insects to feed on plant phloem deficient in B vitamins. Previously, we found there is redundancy in biotin synthesis pathways from both whitefly Bemisia tabaci and symbiotic Hamiltonella due to the presence of whitefly HTGs. Here, we demonstrate that elimination of Hamiltonella decreased biotin levels but elevated the expression of horizontally transferred biotin genes in whiteflies. HTGs proteins exhibit specific expression patterns in specialized insect cells called bacteriocytes housing symbionts. Complementation with whitefly HTGs rescued E. coli biotin gene knockout mutants. Furthermore, silencing whitefly HTGs in Hamiltonella-infected whiteflies reduced biotin levels and hindered adult survival and fecundity, which was partially rescued by biotin supplementation. Each of horizontally transferred biotin genes are conserved in various laboratory cultures and species of whiteflies with geographically diverse distributions, which shares an evolutionary origin. We provide the first experimental evidence that biotin synthesized through acquired HTGs is important in whiteflies and may be as well in other animals. Our findings suggest that B vitamin provisioning in animal-microbe symbiosis frequently evolved from bacterial symbionts to animal hosts through horizontal gene transfer events. This study will also shed light on how the animal genomes evolve through functional transfer of genes with bacterial origin in the wider contexts of microbial ecology.


Assuntos
Biotina , Hemípteros , Animais , Bactérias/genética , Escherichia coli , Simbiose
7.
Planta ; 235(2): 253-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21866346

RESUMO

In plants, the bZIP (basic leucine zipper) transcription factors regulate diverse functions, including processes such as plant development and stress response. However, few have been functionally characterized in maize (Zea mays). In this study, we cloned ZmbZIP72, a bZIP transcription factor gene from maize, which had only one copy in the maize genome and harbored three introns. Analysis of the amino acid sequence of ZmbZIP72 revealed a highly conserved bZIP DNA-binding domain in its C-terminal region, and four conserved sequences distributed in N- or C-terminal region. The ZmbZIP72 gene expressed differentially in various organs of maize plants and was induced by abscisic acid, high salinity, and drought treatment in seedlings. Subcellular localization analysis in onion epidermal cells indicated that ZmbZIP72 was a nuclear protein. Transactivation assay in yeast demonstrated that ZmbZIP72 functioned as a transcriptional activator and its N terminus (amino acids 23-63) was necessary for the transactivation activity. Heterologous overexpression of ZmbZIP72 improved drought and partial salt tolerance of transgenic Arabidopsis plants, as determined by physiological analyses of leaf water loss, electrolyte leakage, proline content, and survival rate under stress. In addition, the seeds of ZmbZIP72-overexpressing transgenic plants were hypersensitive to ABA and osmotic stress. Moreover, overexpression of ZmbZIP72 enhanced the expression of ABA-inducible genes such as RD29B, RAB18, and HIS1-3. These results suggest that the ZmbZIP72 protein functions as an ABA-dependent transcription factor in positive modulation of abiotic stress tolerance and may be a candidate gene with potential application in molecular breeding to enhance stress tolerance in crops.


Assuntos
Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Plantas Tolerantes a Sal/genética , Zea mays/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Clonagem Molecular , Sequência Conservada , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/efeitos dos fármacos , Dados de Sequência Molecular , Cebolas/genética , Cebolas/fisiologia , Pressão Osmótica , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/fisiologia , Sementes/efeitos dos fármacos , Sementes/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Ativação Transcricional , Leveduras/genética , Leveduras/metabolismo
8.
Plant Cell Rep ; 30(9): 1683-99, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21638061

RESUMO

SnRK2 (sucrose non-fermenting 1-related protein kinases 2) represents a unique family of protein kinase in regulating signaling transduction in plants. Although the regulatory mechanisms of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in maize are still unknown. In our study, we cloned an SnRK2 gene from maize, ZmSAPK8, which encoded a putative homolog of the rice SAPK8 protein. ZmSAPK8 had two copies in the maize genome and harbored eight introns in its coding region. We demonstrated that ZmSAPK8 expressed differentially in various organs of maize plants and was up-regulated by high-salinity and drought treatment. A green fluorescent protein (GFP)-tagged ZmSAPK8 showed subcellular localization in the cell membrane, cytoplasm and nucleus. In vitro kinase assays indicated that ZmSAPK8 preferred Mn(2+) to Mg(2+) as cofactor for phosphorylation, and Ser-182 and Thr-183 in activation loop was important for its activity. Heterologous overexpression of ZmSAPK8 in Arabidopsis could significantly strengthen tolerance to salt stress. Under salt treatment, ZmSAPK8-overexpressed transgenic plants exhibited higher germination rate and proline content, low electrolyte leakage and higher survival rate than wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18, ABI1, DREB2A and P5CS1, under high-salinity conditions. The results demonstrated that ZmSAPK8 was involved in diverse stress signal transduction. Moreover, no obvious adverse effects on growth and development in the ZmSAPK8-overexpressed transgenic plants implied that ZmSAPK8 was potentially useful in transgenic breeding to improve salt tolerance in crops.


Assuntos
Arabidopsis/genética , Proteínas Serina-Treonina Quinases/genética , Tolerância ao Sal , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clonagem Molecular , DNA Complementar/genética , Eletrólitos/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Manganês/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Filogenia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Transcrição Gênica , Regulação para Cima , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA