Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Ethnopharmacol ; 315: 116564, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37244407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-Zhenzhu-Tiaozhi capsule (FTZ), a Traditional Chinese Medicine (TCM) patent prescription commonly used in clinical practice, has a significant curative effect on hyperglycemia and hyperlipidemia. Previous studies have shown that FTZ can treat diabetes, but the effect of FTZ on ß-cell regeneration needs to be further explored in T1DM mice. AIM OF THE STUDY: The aim is to investigate the role of FTZ in promoting ß-cell regeneration in T1DM mice, and to further explore its mechanism. MATERIALS AND METHODS: C57BL/6 mice were used as control. NOD/LtJ mice were divided into the Model group and FTZ group. Oral glucose tolerance, fasting blood glucose, and fasting insulin level were measured. Immunofluorescence staining was used to detect the level of ß-cell regeneration and the composition of α-cells and ß-cells in islets. Hematoxylin and eosin staining was used to detect the infiltration degree of inflammatory cells. The apoptosis of islet cells was detected by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling. Western blotting was used to detect the expression levels of Pancreas/duodenum homeobox protein 1 (PDX-1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA), and Neurogenin-3 (NGN3). RESULTS: FTZ could increase insulin levels and reduce the glucose level of T1DM mice and promote ß-cell regeneration. FTZ also inhibited the invasion of inflammatory cells and the islet cell apoptosis, and maintained the normal composition of islet cells, thus preserving the quantity and quality of ß-cells. Furthermore, FTZ promoting ß-cell regeneration was accompanied by increasing the expression of PDX-1, MAFA, and NGN3. CONCLUSION: FTZ can restore the insulin-secreting function of the impaired pancreatic islet, improve blood glucose level, possibly via the enhancing ß cell regeneration via upregulation of PDX-1, MAFA, and NGN3 in T1DM mice, and may be a potential therapeutic drug for T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Glicemia/metabolismo , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina , Regeneração , Proliferação de Células
2.
J Ethnopharmacol ; 301: 115791, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240976

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang-zhenzhu-tiaozhi formula (FTZ) is a patented preparation of traditional Chinese medicine that has been used to treat hyperglycemia and hyperlipidemia in the clinic for almost 10 years. Our previous study had demonstrated that FTZ can protect islet ß cell injury in vitro. However, the efficacy of FTZ on ß cell regeneration in vivo and the involved anti-diabetic mechanism remains unknown. AIM OF THE STUDY: We aim to investigate the effects of FTZ as a good remedy for islet protection and ß cell regeneration, and to reveal the underlying mechanism. MATERIALS AND METHODS: C57BL/6 mice were fed with high-fat diet for 3 weeks and then intraperitoneally injected with streptozotocin (90 mg/kg/d × 1 d) to establish type 2 diabetes (T2D) models. Mice in each group were divided into three batches that sacrificed after 3, 7 and 28 days of FTZ administration. Body weight, blood glucose, and oral glucose tolerance test were measured at indicated time points. Fasting insulin was determined by enzyme-linked immunosorbent assay (ELISA) kit. Neonatal ß cell was assessed by insulin & PCNA double immunofluorescence staining, and the underlying mechanisms related to ß cell regeneration were further performed by hematoxylin-eosin staining, insulin & glucagon double immunofluorescence staining and Western blot. RESULTS: FTZ and metformin can significantly help with the symptoms of DM, such as alleviating weight loss, reducing blood glucose, improving the level of insulin in vivo, and relieving insulin resistance, suggesting FTZ and metformin treatment maintained the normal morphological function of islet. Notably, ß cell regeneration, which is indicated by insulin and PCNA double-positive cells, was promoted by FTZ, whereas few neonatal ß cells were observed in metformin group. Hematoxylin-eosin staining, and its quantification results showed that FTZ effectively prevented the invasion of inflammatory cells into the islets in diabetic mice. Most ß cells in the islets of diabetic model mice were devoid, and the islets were almost all α cells, while the diabetic mice administered FTZ could still maintain about half of the ß cells in the islet. Furthermore, FTZ upregulated the expression of critical transcription factors during ß cell development and maturation (such as PDX-1, MAFA and NGN3) in diabetic mice. CONCLUSIONS: FTZ can alleviate diabetes symptoms and promote ß cell regeneration in diabetic mice. Moreover, FTZ promotes ß cell regeneration by preserving islet (resisting inflammatory cells invading islets), maintaining the number of ß cells in islets, and increasing the expression of PDX-1, MAFA and NGN3.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Metformina , Camundongos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Camundongos Endogâmicos C57BL , Insulina , Regeneração , Metformina/farmacologia
3.
Biomed Pharmacother ; 156: 113831, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228370

RESUMO

BACKGROUND: Diabetes mellitus-related coronary heart disease (DM-CHD) is the most common cause of death in diabetic patients. Various studies have shown that Chinese medicine Fufang-Zhenzhu-Tiaozhi capsule (FTZ) has therapeutic effects on cardiovascular diseases. More research is required to determine the mechanism of FTZ protection against coronary atherosclerosis. OBJECTIVE: To investigate the unique mechanism of FTZ in treatment of DM-CHD minipigs with coronary atherosclerosis. METHODS: High-fat/high-sucrose/high-cholesterol diet combined with streptozotocin and coronary balloon injury were used to induce DM-CHD minipig model, which was then randomly divided into: DM-CHD model, DM-CHD treated with FTZ or positive drug (Metformin + Atorvastatin, M+A). After twenty-two weeks, ultrasonography, electrocardiography, and image detection were employed to detect cardiac functions and assess coronary artery stenosis and plaque. Human umbilical vein endothelial cells (HUVECs) were treated high glucose or/and FTZ. Pigs tissues and treated-cells were collected for further testing. RESULTS: In DM-CHD minipigs, FTZ treatment significantly reduced disordered glycolipid metabolism similar as M+A administration. FTZ and M+A also alleviated coronary stenosis and myocardial injury. In addition, IκB and NF-κB phosphorylation levels, as well as the protein levels of IL-1ß, Bax, cleave-Caspase 3, Bcl-2, and α-SMA were dramatically increased in the DM-CHD coronary artery, whereas CD31 and VE-cadherin expressions were decreased. Similar to M+A, FTZ reversed these protein levels in the DM-CHD coronary artery. Furthermore, FTZ ameliorated the damage and high migration activity of HUVECs induced by high glucose. CONCLUSIONS: FTZ improves coronary atherosclerosis through modulating inflammation, alleviating apoptosis, and inhibiting EndMT of coronary artery to protects against DM-CHD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Animais , Humanos , Doença da Artéria Coronariana/tratamento farmacológico , Células Endoteliais , Glucose , Medicina Tradicional Chinesa , Suínos , Porco Miniatura
4.
Chin Med ; 17(1): 102, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042482

RESUMO

BACKGROUND: Renal injury is one of the common microvascular complications of diabetes, known as diabetic kidney disease (DKD) seriously threatening human health. Previous research has reported that the Chinese Medicine Fufang-Zhenzhu-Tiaozhi (FTZ) capsule protected myocardia from injury in diabetic minipigs with coronary heart disease (DM-CHD). And we found significant renal injury in the minipigs. Therefore, we further investigated whether FTZ prevents renal injury of DM-CHD minipig and H2O2-induced oxidative injury of HK-2 cells. METHODS: DM-CHD model was established by streptozotocin injection, high fat/high-sucrose/high-cholesterol diet combined with balloon injury in the coronary artery. Blood lipid profile, fasting blood glucose (FBG), and SOD were measured with kits. The levels of blood urea nitrogen (BUN), serum creatinine (Scr), urine trace albumin (UALB), urine creatinine (UCR) (calculate UACR), cystatin (Cys-C), and ß-microglobulin (ß-MG) were measured by ELISA kits to evaluate renal function. TUNEL assay was performed to observe the apoptosis. qPCR was used to detect the mRNA expression levels of HO-1, NQO1, and SOD in kidney tissue. The protein expressions of Nrf2, HO-1, NQO1, Bax, Bcl-2, and Caspase 3 in the kidney tissue and HK-2 cells were detected by western blot. Meanwhile, HK-2 cells were induced by H2O2 to establish an oxidative stress injury model to verify the protective effect and mechanisms of FTZ. RESULTS: In DM-CHD minipigs, blood lipid profile and FBG were elevated significantly, and the renal function was decreased with the increase of BUN, Scr, UACR, Cys-c, and ß-MG. A large number of inflammatory and apoptotic cells in the kidney were observed accompanied with lower levels of SOD, Bcl-2, Nrf2, HO-1, and NQO1, but high levels of Bax and Cleaved-caspase 3. FTZ alleviated glucose-lipid metabolic disorders and the pathological morphology of the kidney. The renal function was improved and the apoptotic cells were reduced by FTZ administration. FTZ could also enhance the levels of SOD, Nrf2, HO-1, and NQO1 proteins to promote antioxidant effect, down-regulate the expression of Bax and Caspase3, as well as up-regulate the expression of Bcl-2 to inhibit cell apoptosis in the kidney tissue and HK-2 cells. CONCLUSIONS: We concluded that FTZ prevents renal injury of DM-CHD through activating anti-oxidative capacity to reduce apoptosis and inhibiting inflammation, which may be a new candidate for DKD treatment.

5.
Wei Sheng Yan Jiu ; 51(3): 443-469, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35718909

RESUMO

OBJECTIVE: To investigate the role of ferroptosis in cerebellar injury of mice following lead exposure. METHODS: A total of forty SPF C57 mice were randomly divided into control group, low-dose lead exposure group, middle-dose lead exposure group and high-dose lead exposure group, with 10 mice in each group. Mice in three lead exposure groups were given 0.25, 0.50, 1.00 g/L lead acetate through drinking water for twelve weeks respectively. Lead concentration was detected by inductively coupled plasma mass spectrometer. The motor function was detected by beam walking test and open field test. Pathological changes of cerebellum in mice were observed by H&E staining. Western blotting was used to detect the protein expression of transferrin receptor-1(TFR-1), ferroportin(FPN-1), solute carrier family 7 member 11(SLC7 A11), glutathione peroxidase 4(GPX4), NF-E2-related factor 2(Nrf2) and heme oxygenase-1(HO-1). RESULTS: The lead concentration in cerebellum of mice in low lead group, medium lead group and high lead group were(1.05±0.11), (1.21±0.10) and(1.48±0.1) µg/g, respectively, which were significantly higher than that in the control group. The time to traverse the beam in low lead group, medium lead group and high lead group was 1.34, 1.64 and 2.02 folds of that in control group, respectively. Open field test showed that the central residence time and standing times of mice in low lead group, medium lead group and high lead group were significantly lower than that in control. Purkinje cells in the cerebellum of mice exposed to different doses of lead showed irregular arrangement, small cell bodies and deep staining, especially in the high lead group. The relative levels of iron in low lead group, medium lead group and high lead group was 1.77, 2.29 and 3.77 folds of that in control group, respectively. The content of MDA in cerebellum of mice in three lead exposure groups increased significantly, while the GHS decreased significantly. Compared with the control group, the expression of TFR-1 protein increased significantly in the lead exposure group, while the expression of FPN-1 protein decreased significantly only in the medium lead group and high lead group, which was 60% and 50% of the control group. Compared with the control group, the expressions of oxidative stress regulatory proteins SLC7 A11 and GPX4 in medium lead group and high lead group decreased significantly. Lead exposure significantly decreased the expression of Nrf2 and HO-1 protein in cerebellum, especially in high lead group. CONCLUSION: In this experiment condition, lead may induce ferroptosis in cerebellum of mice, of which, Nrf2/HO-1 signaling pathway might be involved in, and then further result in motor dysfunction of mice.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Animais , Cerebelo/metabolismo , Chumbo/toxicidade , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais
6.
Biomed Pharmacother ; 138: 111532, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311531

RESUMO

Fufang Zhenzhu Tiaozhi formula (FTZ), a preparation of Chinese herbal medicine, has various pharmacological properties, such as hypoglycemic, hypolipidemic, anticoagulant, and anti-inflammatory activities. Hepatocyte apoptosis is a marker of nonalcoholic steatohepatitis (NASH) and contributes to liver injury, fibrosis, and inflammation. Given the multiple effects of FTZ, we investigated whether FTZ can be a therapeutic agent for NASH and its mechanism. In the present study, we observed that FTZ treatment had an obviously favorable influence on hepatic steatosis and fibrosis in the histopathologic features of type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD) with NASH minipigs. In addition, immunohistochemical analysis showed increased expression of the fibrotic marker α-smooth muscle actin (α-SMA), and a TUNEL assay revealed increased apoptotic positive hepatic cells in the liver tissues of the model group. Furthermore, FTZ administration reduced the increased expression of α-SMA, and FTZ inhibited apoptosis by affecting Bcl-2/Bax and cleaved caspase-3 expression. Mechanistically, our data suggested that FTZ treatment attenuated hepatic steatosis and fibrosis via the adenosine monophosphate-activated protein kinase (AMPK) pathway. In vitro studies showed that FTZ also attenuated intracellular lipid accumulation in HepG2 cells exposed to palmitic acid (PA) and oleic acid (OA). FTZ upregulated the expression levels of P-AMPK and BCL-2 and downregulated BAX. The changes induced by FTZ were reversed by Compound C, an inhibitor of AMPK. In conclusion, FTZ attenuated NASH by ameliorating steatosis and hepatocyte apoptosis, which is attributable to the regulation of the AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Doença das Coronárias/enzimologia , Doença das Coronárias/etiologia , Doença das Coronárias/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/enzimologia , Células Hep G2 , Humanos , Lipídeos/sangue , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Suínos , Porco Miniatura
7.
Biomed Pharmacother ; 137: 111343, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761594

RESUMO

BACKGROUND AND PURPOSE: Diabetes mellitus (DM) is a major risk factor for coronary heart disease (CHD). Previous research has reported that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula has obvious effects on the treatment of dyslipidemia and hyperglycemia. In the present study, we intended to establish a convenient DM-CHD model in minipigs and investigated the protective effect of FTZ against myocardial injury and its mechanism. METHODS: The DM-CHD model was established by a high-fat/high-sucrose/high-cholesterol diet (HFSCD) combined with balloon injury in the coronary artery. Subsequently, sixteen Wuzhishan minipigs were assigned to three groups: control group, model group, and FTZ group. The model group and FTZ group were given a HFSCD, while the control group was given a normal diet (ND). FTZ was given with meals in the FTZ group. During this time, biochemical parameters, such as total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein (HDL-C), and fasting blood glucose (FBG), were measured by using testing kits. Insulin (INS) was determined by ELISA, and the homeostasis model assessment index of insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance levels. After FTZ administration, the plasma levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and cardiac troponin I (cTnI) were measured by using ELISA kits to evaluate myocardial injury. Coronary artery stenosis was analyzed by angiographic and HE staining. Myocardial ischemia was assayed with electrocardiogram (ECG). Moreover, cytokines, including interleukin-6 (IL-6), hypersensitive C-reactive protein (hs-CRP), and tumor necrosis factor-alpha (TNF-α), were measured by ELISA kits to assess inflammation. The myocardial tissue was collected, and the pathological morphology was observed by transmission electron microscopy (TEM), HE staining, and Masson staining. Western blots were used to detect the expression of PI3K, AKT, p-AKT, p-NF-κB, and NF-κB. RESULTS: A DM-CHD model in minipigs with glucose-lipid metabolism disorder, coronary artery incrassation and myocardial damage was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ effectively inhibited coronary artery incrassation and protected the myocardium against injury in DM-CHD minipigs. FTZ decreased proinflammatory cytokine levels and upregulated the protein expression of the PI3K/Akt pathway in the myocardium. CONCLUSIONS: A novel DM-CHD model in minipigs was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ has a protective effect against myocardial injury in DM-CHD by inhibiting inflammation and activating the PI3K/AKT signaling pathway.


Assuntos
Cardiotônicos/uso terapêutico , Doença das Coronárias/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Miocárdio/patologia , Angiografia , Animais , Glicemia/análise , Doença das Coronárias/patologia , Cardiomiopatias Diabéticas/patologia , Eletrocardiografia , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Medicina Tradicional Chinesa , Suínos , Porco Miniatura
8.
J Ethnopharmacol ; 274: 114056, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33771638

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Zhenzhu Tiaozhi formula (FTZ) of which a patented preparation of Chinese herbal medicine has been well documented with significant clinical curative effect for hyperglycemia and hyperlipidemia. Because of the complexity of the chemical constituents of Chinese herbal formulas, the holistic pharmacological mechanism of FTZ acting on type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) remains unclear. AIM OF THE STUDY: To investigate the pharmacological efficacy and mechanism of FTZ in the treatment of T2DM accompanied by NAFLD. MATERIALS AND METHODS: Network pharmacology and validation in minipigs were used in this study. First, potential bioactive compounds of FTZ were identified by the traditional Chinese medicine system pharmacology technology platform (TCMSP). Then, targets of compounds were gathered using DrugBank, SwissTargetPrediction and TCMSP, while targets for T2DM and NAFLD were collected from CTD (compounds-targets-diseases network) and GeneCards. Common targets were defined as direct therapeutic targets acting on T2DM with NAFLD. In addition, crucial targets were chosen by the protein-protein interaction (PPI) network and contribution to compound-therapeutic targets in T2DM with the NAFLD network. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the metabolism-related signaling pathways affected by FTZ. Candidate patterns selected by network pharmacology were tested in the minipigs model of T2DM with NAFLD. Measurements of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting insulin (FINS) and fasting blood glucose (FBG) in the blood and the expression levels of proteins, including PI3K-AKT and HIF-1α, in the livers of the minipigs were followed by the administration of FTZ. RESULTS: A total of 116 active compounds and 82 potential targets related to T2DM and NAFLD were found. Pathway and functional enrichment analysis showed that FTZ mainly regulates metabolism-related pathways, including PI3K-AKT, HIF-1α, TNFα and MAPK. Animal experiments showed that FTZ treatment significantly reduced the serum levels of TG, TC, LDL-C and FBG, increased serum levels of HDL-C, ameliorated systemic insulin resistance (IR), and attenuated liver damage in minipigs with T2DM and NAFLD. FTZ treatment has an obviously favorable influence on hepatic steatosis and liver lipid accumulation in the histopathologic features of HE, Oil red O staining, and electron microscopy. Mechanistically, FTZ improved liver metabolism by increasing the phosphorylation of PI3K-AKT and decreasing the expression of HIF-1α. CONCLUSION: Network pharmacology was supported by experimental studies, which indicated that FTZ has demonstrated therapeutic benefits in T2DM and NAFLD by regulating the PI3K-AKT and HIF-1α signaling pathways.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Glicemia/efeitos dos fármacos , Cápsulas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Farmacologia/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprodutibilidade dos Testes , Suínos , Porco Miniatura
9.
Hepatology ; 74(2): 686-703, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33576035

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), has become a major cause of liver transplantation and liver-associated death. NASH is the hepatic manifestation of metabolic syndrome and is characterized by hepatic steatosis, inflammation, hepatocellular injury, and different degrees of fibrosis. However, there is no US Food and Drug Administration-approved medication to treat this devastating disease. Therapeutic activators of the AMP-activated protein kinase (AMPK) have been proposed as a potential treatment for metabolic diseases such as NASH. Cordycepin, a natural product isolated from the traditional Chinese medicine Cordyceps militaris, has recently emerged as a promising drug candidate for metabolic diseases. APPROACH AND RESULTS: We evaluated the effects of cordycepin on lipid storage in hepatocytes, inflammation, and fibrosis development in mice with NASH. Cordycepin attenuated lipid accumulation, inflammation, and lipotoxicity in hepatocytes subjected to metabolic stress. In addition, cordycepin treatment significantly and dose-dependently decreased the elevated levels of serum aminotransferases in mice with diet-induced NASH. Furthermore, cordycepin treatment significantly reduced hepatic triglyceride accumulation, inflammatory cell infiltration, and hepatic fibrosis in mice. In vitro and in vivo mechanistic studies revealed that a key mechanism linking the protective effects of cordycepin were AMPK phosphorylation-dependent, as indicated by the finding that treatment with the AMPK inhibitor Compound C abrogated cordycepin-induced hepatoprotection in hepatocytes and mice with NASH. CONCLUSION: Cordycepin exerts significant protective effects against hepatic steatosis, inflammation, liver injury, and fibrosis in mice under metabolic stress through activation of the AMPK signaling pathway. Cordycepin might be an AMPK activator that can be used for the treatment of NASH.


Assuntos
Desoxiadenosinas/farmacologia , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Desoxiadenosinas/uso terapêutico , Hepatócitos , Humanos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
10.
J Ethnopharmacol ; 246: 112243, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31541722

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba leaves and Panax ginseng are Chinese medicine commonly used in combination for cerebral disease. AIM OF THE STUDY: To investigate the effect of standard extract of Ginkgo biloba leaves (EGb) on facilitating brain uptake of ginsenoside and its underlying mechanisms. MATERIALS AND METHODS: The increasing uptake of ginsenosides in the brain of rats by EGb were detected by LC-MS/MS analysis. Evans blue and FITC-dextran leakage were determined to evaluate blood-brain barrier (BBB) permeability in vivo. Transendothelial electrical resistance (TEER) and Na-F penetration rate were measured with a co-culture of the human cerebral microvascular endothelial cell line (hCMEC/D3) and human normal glial cell line (HEB) in vitro BBB model. WB were used to analyzed the expression of BBB tight junctions (TJs) related protein (ZO-1, Occludin, Claudin-3, p-ERM, and p-MLC), ultrastructure of TJs was determined by transmission electron microscope. RESULTS: LC-MS/MS analysis demonstrated that EGb could improve brain uptake of ginsenoside Rg1, Re, Rd and Rb1. In vivo study showed that, BBB permeability was significantly increased after EGb administration, evidenced by the markedly increased penetration of FITC-dextran and Evans Blue into the mice brain parenchyma. In the in vitro BBB model, reduced TEER and increased Na-F penetration rate was observed in EGb group, which was associated with alteration of TJs ultrastructure. Furthermore, the expression of p-ERM and p-MLC in hCMEC/D3 as well as mice brain microvessels were significantly upregulated, but no significant change on the expression of TJs proteins (ZO-1, Occludin and Claudin-3). Moreover, the effect of EGb on in vitro BBB permeability and ERM, MLC phosphorylation was counteracted by DPCPX, an A1 adenosine receptor (A1R) antagonist. CONCLUSIONS: EGb might induce ERM/MLC phosphorylation and increase the cell-cell junction gaps to cause a reversible increase of the BBB permeability via A1R signaling pathway. Our results may contribute to better use of EGb in the treatment of brain diseases.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Ginsenosídeos/farmacocinética , Extratos Vegetais/farmacologia , Receptor A1 de Adenosina/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ginkgo biloba , Ginsenosídeos/metabolismo , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
Cell Chem Biol ; 25(3): 255-261.e4, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29307841

RESUMO

Nicotinamide adenine dinucleotide (NAD) levels decrease with aging as a result of aging-associated CD38 upregulation. Here, we established a cell model with decreased cellular NAD levels by overexpressing CD38 or treating cells with FK866, an inhibitor of nicotinamide phosphoribosyltransferase. We revealed that decreased NAD triggered reactive oxygen species (ROS)-mediated degradation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which drove cells to undergo epithelial-mesenchymal transition (EMT). Moreover, we showed that oxidation of the Cys44 residue to sulfonic acid in 15-PGDH led to its degradation via non-canonical ubiquitination-proteasome and autophagy pathways. Mutation of Cys44 to alanine abolished ROS-induced 15-PGDH degradation. We demonstrated that 15-PGDH silencing promoted EMT, whereas supplementation with NAD precursors increased NAD and 15-PGDH stability, and reversed the EMT process. Taken together, these results suggest that declining NAD levels contribute to age-dependent increases in cancer incidence, and repletion of NAD precursors is beneficial for increasing 15-PGDH expression.


Assuntos
Cisteína/química , Transição Epitelial-Mesenquimal , Hidroxiprostaglandina Desidrogenases/metabolismo , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Acrilamidas/farmacologia , Autofagia , Linhagem Celular Tumoral , Movimento Celular , Cisteína/metabolismo , Dinoprostona/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Hidroxiprostaglandina Desidrogenases/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Niacina/farmacologia , Oxirredução , Piperidinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Ácidos Sulfônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA