Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 10: 799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379574

RESUMO

Rubus chingii Hu (R. chingii), referred to as "Fu-Pen-Zi" in Chinese, has great medicinal and dietary values since ancient times. The dried fruits of R. chingii have been widely used in traditional Chinese medicine (TCM) for the treatment of kidney enuresis and urinary frequency for centuries. According to current findings, R. chingii has been reported to contain a variety of chemical constituents, mostly triterpenoids, diterpenoids, flavonoids, and organic acids. These compounds have been demonstrated to be the major bioactive components responsible for pharmacological effects such as anticomplementary, anticancer, antioxidant, antimicrobial, and anti-inflammatory functions. Therefore, this review focused on the up-to-date published data of the literature about R. chingii and comprehensively summarized its phytochemistry, pharmacology, quality control, and toxicity to provide a beneficial support to its further investigations and applications in medicines and foods.

2.
Theor Appl Genet ; 132(10): 2793-2807, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31280342

RESUMO

KEY MESSAGE: A wild soybean allele conferring 100-seed weight, protein content and oil content simultaneously was fine-mapped to a 329-kb region on Chromosome 15, in which Glyma.15g049200 was predicted a candidate gene. Annual wild soybean characterized with small 100-seed weight (100SW), high protein content (PRC), low oil content (OIC) may contain favourable alleles for broadening the genetic base of cultivated soybeans. To evaluate these alleles, a population composed of 195 chromosome segment substitution lines (SojaCSSLP4), with wild N24852 as donor and cultivated NN1138-2 as recurrent parent, was tested. In SojaCSSLP4, 10, 9 and 8 wild segments/QTL were detected for 100SW, PRC and OIC, respectively. Using a backcross-derived secondary population, one segment for the three traits (q100SW15, qPro15 and qOil15) and one for 100SW (q100SW18.2) were fine-mapped into a 329-kb region on chromosome 15 and a 286-kb region on chromosome 18, respectively. Integrated with the transcription data in SoyBase, 42 genes were predicted in the 329-kb region where Glyma.15g049200 showed significant expression differences at all seed development stages. Furthermore, the Glyma.15g049200 segments of the two parents were sequenced and compared, which showed two base insertions in CDS (coding sequence) in the wild N24852 comparing to the NN1138-2. Since only Glyma.15g049200 performed differential CDS between the two parents but related to the three traits, Glyma.15g049200 was predicted a pleiotropic candidate gene for 100SW, PRC and OIC. The functional annotation of Glyma.15g049200 indicated a bidirectional sucrose transporter belonging to MtN3/saliva family which might be the reason that this gene provides a same biochemical basis for 100SW, PRC and OIC, therefore, is responsible for the three traits. This result may facilitate isolation of the specific gene and provide prerequisite for understanding the other two pleiotropic QTL.


Assuntos
Cromossomos de Plantas/genética , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/anatomia & histologia , Sementes/metabolismo , Óleo de Soja/metabolismo , Alelos , Mapeamento Cromossômico , Fenótipo , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
3.
BMC Complement Altern Med ; 18(1): 292, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382864

RESUMO

BACKGROUND: Zuojinwan (ZJW), a classic herbal formula, has been extensively used to treat gastric symptoms in clinical practice in China for centuries. However, the pharmacological mechanisms of ZJW still remain vague to date. METHODS: In the present work, a network pharmacology-based strategy was proposed to elucidate its underlying multi-component, multi-target, and multi-pathway mode of action against gastritis. First we collected putative targets of ZJW based on TCMSP and STITCH databases, and a network containing the interactions between the putative targets of ZJW and known therapeutic targets of gastritis was built. Then four topological parameters, "degree", "betweenness", "closeness", and "coreness" were calculated to identify the major targets in the network. Furthermore, the major hubs were imported to the Metacore database to perform a pathway enrichment analysis. RESULTS: A total of 118 nodes including 59 putative targets of ZJW were picked out as major hubs in terms of their topological importance. The results of pathway enrichment analysis indicated that putative targets of ZJW mostly participated in various pathways associated with anti-inflammation response, growth and development promotion and G-protein-coupled receptor signaling. More importantly, five putative targets of ZJW (EGFR, IL-6, IL-1ß, TNF-α and MCP-1) and two known therapeutic targets of gastritis (CCKBR and IL-12ß) and a link target NF-κB were recognized as active factors involved in the main biological functions of treatment, implying the underlying mechanisms of ZJW acting on gastritis. CONCLUSION: ZJW could alleviate gastritis through the molecular mechanisms predicted by network pharmacology, and this research demonstrates that the network pharmacology approach can be an effective tool to reveal the mechanisms of traditional Chinese medicine (TCM) from a holistic perspective.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Gastrite/tratamento farmacológico , Redes Reguladoras de Genes/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Medicamentos de Ervas Chinesas/química , Gastrite/genética , Gastrite/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA