RESUMO
Objective: To analyze the global literature on nutritional deficiencies in bariatric surgery (BS) since January 1, 1985, and to discuss the current status of research, research hotspots, and new development trend and treatment of nutritional deficiency in bariatric surgery. It provides ideas and basis for promoting the development of bariatric surgery and new alternative therapy or treatment protocols. Methods: The Web of Science (WOS) database core collection was used as the data source, and VOSviewer 1.6.17 software was used to search the literature on the topic of "nutritional deficiencies in bariatric surgery." The number of published literature, the distribution of authors, institutions, and countries, keyword cooccurrences, and journal cocitations were visualized and analyzed. Results: A total of 1015 relevant publications was obtained after searching and screening, and the overall trend of literature published was on the rise. The most published countries, institutions, and authors were USA, University of Sao Paulo, Ramalho, Andrea; Obesity Surgery has been the most frequently cited journal (7943 citations), and the top 10 journals had high impact factors. Keyword cooccurrence analysis showed that "bariatric surgery" and "nutritional deficiencies" are the hot topics of research in this field. Conclusion: There is an urgent need for bariatric surgery issuing institutions and authors to strengthen cross-institutional, cross-team, and multicenter and multidisciplinary cooperation, to promote and facilitate the exchange and cooperation in the field of bariatric surgery between developed countries in Europe and America and developing countries in Asia, Africa, and Latin America, to draw the attention of developing countries to the health problems caused by obesity, and to encourage and support the development of developing countries in this field. Bariatric surgery, obesity, weight loss, Y-type gastric bypass, gastric bypass, and nutritional deficiency are the hot research topics in the field of nutritional deficiency in bariatric surgery, and metabolic surgery, single anastomosis gastric bypass, micronutrient supplementation, micronutrient deficiency, intestinal microbiology, and guidelines are the new trends in this field.
Assuntos
Cirurgia Bariátrica , Desnutrição , Cirurgia Bariátrica/métodos , Protocolos Clínicos , Humanos , Micronutrientes , Estudos Multicêntricos como Assunto , Nutrientes , Obesidade/cirurgiaRESUMO
As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/enzimologia , Glucose/farmacologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/efeitos dos fármacos , Obesidade/enzimologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Animais , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Macaca mulatta , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Músculo Esquelético/enzimologia , Obesidade/sangue , Obesidade/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , UbiquitinaçãoRESUMO
Traditional boron affinity materials usually capture cis-diol-containing molecules under alkaline condition, but some cis-diol-containing molecules, such as polyphenols, are unstable and easy to be oxidized and degraded under alkaline condition. Teamed boronate affinity (TBA) can specifically capture cis-diol-containing molecules under neutral condition. However, the report about combination of TBA and magnetic nanoparticle for the extraction was rare. Here, we fabricated two kinds of teamed boronate affinity magnetic nanoparticles (TBAMP), including Fe3O4@TBAP and Fe3O4@SiO2@TBAP. Adsorption capacities of cis-diol-containing molecules on the latter were similar to these on the former, but the latter possessed more superior regeneration performance than the former. Therefore, the TBAMP with more superior regeneration performance was used as magnetic solid-phase extraction (MSPE) adsorbent for capturing polyphenols under neutral condition. The TBAMP MSPE was optimized in detail, and combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) for the simultaneous determination of 13 kinds of polyphenols from Flos Lonicerae Beverage. The proposed method showed low limit of detection between 0.01 and 0.20 ng mL-1. In blank Flos Lonicerae Beverage, 11 kinds of polyphenols ranged from 0.54 ng mL-1 to 52.99 ng mL-1 were detected. In the standard addition method, recoveries of cis-diol-containing polyphenols were between 85.7% and 102.1% with intra-day and inter-day relative standard deviation ranging from 3.2% to 5.1% and 5.3% to 7.3%, respectively.
Assuntos
Bebidas/análise , Compostos de Boro/química , Cromatografia Líquida de Alta Pressão , Nanopartículas de Magnetita/química , Espectrometria de Massas , Extratos Vegetais/química , Polifenóis/análise , Extração em Fase Sólida/métodos , Adsorção , Concentração de Íons de Hidrogênio , Limite de Detecção , Lonicera , Polifenóis/isolamento & purificaçãoRESUMO
The effective removal and recovery of phosphorus from aquatic environments are highly important for successful eutrophication control and phosphorus recycling. Herein, we prepared biochar containing MgO nanoparticles (MgO-biochar) by fast pyrolysis of MgCl2-impregnated corn stalks, probed its phosphate adsorption performance. Through the fast pyrolysis, the MgCl2 promoted the formation of micropores and mesoporous, and decomposed into MgO nanoparticles with the size smaller than 100 nm. The adsorption experiments showed that the adsorption property increased with the increase of Mg content, and had a strong correlation with the external surface area. And the phosphate adsorption was well described by the Langmuir-Freundlich model (maximum adsorption capacity was determined as 60.95 mg P/g). Kinetic analysis and characterization analysis of MgO-biochar for different adsorption time indicated that phosphate adsorption onto MgO-biochar was mainly controlled by rapid binding to the external surface (about 75% of the equilibrium adsorption amount), and the uptake rate was limited by the slow diffusion of phosphate into the biochar interior (about 25% of the equilibrium adsorption amount). The results suggested that the synthesized MgO-biochar with enough MgO active site dispersed on a higher external surface can be used as a potential adsorbent for phosphate removal and recovery from aqueous solution.
Assuntos
Carvão Vegetal/síntese química , Óxido de Magnésio/química , Fósforo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cinética , Nanopartículas/química , Fosfatos/química , Fósforo/química , Reciclagem , Água , Poluentes Químicos da Água/análiseRESUMO
Mitochondrial calcium ([Ca2+]mito) dynamics plays vital roles in regulating fundamental cellular and organellar functions including bioenergetics. However, neuronal [Ca2+]mito dynamics in vivo and its regulation by brain activity are largely unknown. By performing two-photon Ca2+ imaging in the primary motor (M1) and visual cortexes (V1) of awake behaving mice, we find that discrete [Ca2+]mito transients occur synchronously over somatic and dendritic mitochondrial network, and couple with cytosolic calcium ([Ca2+]cyto) transients in a probabilistic, rather than deterministic manner. The amplitude, duration, and frequency of [Ca2+]cyto transients constitute important determinants of the coupling, and the coupling fidelity is greatly increased during treadmill running (in M1 neurons) and visual stimulation (in V1 neurons). Moreover, Ca2+/calmodulin kinase II is mechanistically involved in modulating the dynamic coupling process. Thus, activity-dependent dynamic [Ca2+]mito-to-[Ca2+]cyto coupling affords an important mechanism whereby [Ca2+]mito decodes brain activity for the regulation of mitochondrial bioenergetics to meet fluctuating neuronal energy demands as well as for neuronal information processing.
Assuntos
Encéfalo/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Encéfalo/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias/ultraestrutura , Córtex Motor/citologia , Córtex Motor/metabolismo , Córtex Visual/citologiaRESUMO
The impairment of mitochondrial bioenergetics, often coupled with exaggerated reactive oxygen species (ROS) production, is a fundamental disease mechanism in organs with a high demand for energy, including the heart. Building a more robust and safer cellular powerhouse holds the promise for protecting these organs in stressful conditions. Here, we demonstrate that NADH:ubiquinone oxidoreductase subunit AB1 (NDUFAB1), also known as mitochondrial acyl carrier protein, acts as a powerful cardio-protector by conferring greater capacity and efficiency of mitochondrial energy metabolism. In particular, NDUFAB1 not only serves as a complex I subunit, but also coordinates the assembly of respiratory complexes I, II, and III, and supercomplexes, through regulating iron-sulfur biosynthesis and complex I subunit stability. Cardiac-specific deletion of Ndufab1 in mice caused defective bioenergetics and elevated ROS levels, leading to progressive dilated cardiomyopathy and eventual heart failure and sudden death. Overexpression of Ndufab1 effectively enhanced mitochondrial bioenergetics while limiting ROS production and protected the heart against ischemia-reperfusion injury. Together, our findings identify that NDUFAB1 is a crucial regulator of mitochondrial energy and ROS metabolism through coordinating the assembly of respiratory complexes and supercomplexes, and thus provide a potential therapeutic target for the prevention and treatment of heart failure.
Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Animais , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/patologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismoRESUMO
IMPACT STATEMENT: Arsenic-induced respiratory inflammatory damage is an important occupational hazard in many areas of the world, particularly in underdeveloped and developing countries. Effective treatments are lacking and expensive. Therefore, the aim of the study was to examine the anti-inflammatory effects of proanthocyanidin (PC) and the molecular mechanisms in vivo and in vitro. The present study showed that PC extracted from grape seed could attenuate the lung damage in a mouse model of arsenic poisoning. The effects were observed at the level of lung histology and inflammasome expression. This study suggests that a natural compound is effective in mitigating the toxic effects of arsenic in the lungs, providing an inexpensive and more readily accessible method for treating arsenic exposure in some parts of the world.
Assuntos
Trióxido de Arsênio/toxicidade , Extrato de Sementes de Uva/farmacologia , Lesão Pulmonar/induzido quimicamente , NF-kappa B/efeitos dos fármacos , Proantocianidinas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Humanos , Lesão Pulmonar/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Untreated corn stalk (CS), deionized water washed CS (WCS), aqueous phase bio-oil washed CS (LCS), and 5% acetic acid washed CS (CCS) were torrefied at 230, 260, and 290⯰C. The influences of washing, torrefaction, and combined washing-torrefaction pretreatments on corn stalk pyrolysis were investigated. The combined pretreatments, especially aqueous phase bio-oil washing-torrefaction improved fuel properties of pretreated samples largely by increasing their volatile and hydrogen contents. Absorption peaks of O-H and CO groups in combined pretreatment samples increased when torrefaction temperature increased. In addition, CO, H2, and CH4 contents of pyrolysis gas increased, while CO2 decreased after combined pretreatments. The bio-oil yields from WCS290, LCS290, and CCS290 increased by 134.04%, 127.66%, and 129.79% respectively, compared with that from CS290. Similarly, their relative sugar contents (rich in levoglucosan) increased to 36.63%, 45.89%, and 52.34%, respectively. Aqueous phase oil washing-torrefaction is a promising pretreatment and acetic acid plays the most important role.
Assuntos
Óleos de Plantas/química , Polifenóis/química , Zea mays/química , Temperatura Alta , Pirólise , ÁguaRESUMO
Ligand fishing is a widely used approach for screening active compounds from natural products. Recently, cell membrane (CM) as affinity ligand has been applied in ligand fishing, including cell membrane chromatography (CMC) and CM-coated magnetic bead. However, these methods possess many weaknesses, including complicated preparation processes and time-consuming operation. In this study, cheap and easily available cellulose filter paper (CFP) was selected as carrier of CM and used to fabricate a novel CM-coated CFP (CMCFP) for the first time. The type of CFP was optimized according to the amount of immobilized protein, and the immobilization of CM onto CFP by the insertion and self-fusion process was verified by confocal imaging. The CMCFP exhibited good selectivity and stability and was used for fishing potentially active compounds from extracts of Angelica dahurica. Three potentially active compounds, including bergapten, pabulenol, and imperatorin, were fished out and identified. The traditional Chinese medicine systems pharmacology database and analysis platform was used to build an active compound-target protein network, and accordingly, the gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1) was deduced as potential target of CM for the active compounds of Angelica dahurica. Molecular docking was performed to evaluate the interaction between active compounds and GABRA1, and bergapten was speculated as a new potentially active compound. Compared with other methods, the fishing assay based on CMCFP was more effective, simpler, and cheaper.
Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Celulose/química , Descoberta de Drogas/instrumentação , Membrana Eritrocítica/metabolismo , Filtração/instrumentação , Angelica/química , Animais , Produtos Biológicos/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Papel , Coelhos , Receptores de GABA-A/metabolismoRESUMO
Firstly, the operating conditions were screened for biomass pyrolysis in a fixed bed with respect to higher oil yield. A temperature of 600⯰C with an N2 flow of 80â¯ml/min exhibited the highest bio-oil yield. Then, the catalytic pyrolysis of biomass with various catalysts (Al2O3, CaO, MgO, CuO, Fe2O3, NiO, ZnO, ZrO2, TiO2, HZSM-5 and MCM-41) was studied to identify the selective deoxygenation method with respect to improve bio-oil quality with smaller drop in bio-oil yield. With the addition of CaO, the oxygen was mainly removed in the form of CO2, while, in other cases, more oxygen was removed in the form of H2O. Furthermore, more decarboxylation or less dehydration is better for the balance between yield and deoxygenation amount, and the preferred decarboxylation would lead to a higher pH and lower moisture content of bio-oil.
Assuntos
Biocatálise , Biomassa , Oxigênio/metabolismo , Óleos de Plantas/metabolismo , Polifenóis/metabolismo , Temperatura Alta , Oxirredução , PiróliseRESUMO
Tangzhiqing tablet (TZQ) is derived from Tangzhiqing formula, which has been used to regulate glucose and lipid metabolism in China for hundreds of years. However, as a new Chinese patent medicine, its clinical indication is not clear. To explore the clinical indication and effect on the patients with type 2 diabetes mellitus (T2DM), a pilot clinical trial and metabolomics study were carried out. In the clinical study, T2DM patients were divided into three groups and treated with TZQ, placebo, or acarbose for 12 weeks, respectively. The metabolomic study based on UPLC Q-TOF MS was performed including patients with hypertriglyceridemia in TZQ and placebo groups and healthy volunteers. The clinical results showed that TZQ could reduce glycosylated hemoglobin (HbA1c) and fasting insulin. For patients with hypertriglyceridemia in TZQ group, the levels of HbA1c all decreased and were correlated with the baseline level of triglyceride. Metabonomics data showed a significant difference between patients and healthy volunteers, and 17 biomarkers were identified. After 12-week treatment with TZQ, 11 biomarkers decreased significantly (p<0.05), suggesting that TZQ could improve the metabolomic abnormalities in these participants. In conclusion, the clinical indication of TZQ was T2DM with hypertriglyceridemia, and its target was related to glycerophospholipid metabolism.
RESUMO
A combination between modification with porous layer and grafting of polyethyleneimine (PEI) on the inner face of capillary was for the first time developed for boronate affinity in-tube solid-phase microextraction (SPME) material to enhance the extraction capacity for cis-diol-containing polyphenols. The successful synthesis of boronate-decorated polyethyleneimine-grafted porous layer open tubular (BPPLOT) capillary was confirmed by scanning electron micrograph, Fourier transform-infrared spectra and absorption experiments. The porous layer, PEI and boronate affinity provided high specific surface area, more binding sites for boronate groups and specific selectivity of BPPLOT capillary, respectively. The maximum binding quantity of BPPLOT capillary greatly improved, and ranged from 143 to 170⯵gâ¯m-1 for cis-diol-containing polyphenols (catechin, chlorogenic acid, caffeic acid and epicatechin). A green method based on boronate affinity in-tube SPME was developed for separation and enrichment polyphenols, and some parameters of in-tube SPME were optimized. After in-tube SPME, HPLC with UV detection was used for quantitative determination of polyphenols. Recoveries of standard spiked cis-diol-containing polyphenols from fruit juice were between 80.9% and 102%, with intra-day and inter-day coefficient of variation ranging from 4.8% to 7.3% and 5.0% to 8.6%, respectively. Conversely, recovery of non-cis-diol-containing ferulic acid was no greater than 3.0%. These results suggested that the BPPLOT capillary could effectively separate and enrich cis-diol-containing polyphenols from real samples.
Assuntos
Ácidos Borônicos/química , Sucos de Frutas e Vegetais/análise , Polietilenoimina/química , Polifenóis/isolamento & purificação , Álcoois/química , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Microextração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier , Chá/química , TemperaturaRESUMO
Wet torrefaction (WT) possesses some advantages over dry torrefaction (DT). In this study, a comparative analysis of torrefied corn stalk from WT and DT was conducted along with an investigation of their pyrolysis properties under optimal conditions for biomass pyrolysis polygeneration. Compared with DT, WT removed 98% of the ash and retained twice the amount of hydrogen. The impacts of DT and WT on the biomass macromolecular structure was also found to be different using two-dimensional perturbation correlation infrared spectroscopy (2D-PCIS). WT preserved the active hydroxyl groups and rearranged the macromolecule structure to allow cellulose to be more ordered, while DT removed these active hydroxyl groups and formed inter-crosslinking structures in macromolecules. Correspondingly, the bio-char yield after WT was lower than DT but the bio-char quality was upgraded due to high ash removal. Furthermore, higher bio-oil yield, higher sugar content, and higher H2 generation, were obtained after WT.
Assuntos
Óleos de Plantas , Polifenóis , Zea mays , Biocombustíveis , Biomassa , Temperatura AltaRESUMO
Esophageal squamous cell carcinoma is the most common type of squamous cell carcinoma. Grape seed proanthocyanidin extract (GSPE) is considered to exhibit anticancer activity against several different types of cancer. We aimed to determine whether GSPE inhibited esophageal squamous cancerous cells and the possible involvement of NF-κB in this process. The human esophageal squamous cancer cell line ECA109 was treated with GSPE (0-80 µg/mL) and BAY11-7082 (10 µmol/L) for 12, 24, and 48 h. The MTT assay was used to determine cell proliferation; alterations in cell apoptosis were detected by flow cytometry; levels of inflammatory factors interleukin-6 and cyclooxygenase-2 and apoptotic proteins Bax/Bcl-2 were measured by ELISA; qRT-PCR and western blots were used to examine the activation of caspase-3 and NF-κB signaling. GSPE inhibited the proliferation of ECA109 cells and induced cellular apoptosis in a time- and dose-dependent manner. ELISA results showed that GSPE and BAY11-7082 reduced the secretion of inflammatory cytokines interleukin-6 and cyclooxygenase-2. The results of PCR and western blotting indicated that GSPE and BAY11-7082 activated caspase-3 and attenuated the activation of the NF-κB signaling pathway. GSPE induced apoptosis in ECA109 cells and inhibited ECA109 cell proliferation via a reduction in the secretion of inflammatory cytokines. This mechanism may be related to the attenuation of NF-κB activity and the sensitization of caspase-3.
Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Extrato de Sementes de Uva/farmacologia , NF-kappa B/metabolismo , Proantocianidinas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND AND AIM: To conduct meta-analyses of all published studies on various aspects of association between vitamin D and tuberculosis (TB). METHODS: PubMed and Web of Knowledge were searched for all properly controlled studies on vitamin D and TB. Pooled odds ratio, mean difference or standardized mean difference, and its corresponding 95% confidence interval were calculated with the Cochrane Review Manager 5.3. RESULTS: A significantly lower vitamin D level was found in TB patients vs controls; vitamin D deficiency (VDD) was associated with an increased risk of TB, although such an association was lacking in the African population and in the human immunodeficiency virus-infected African population. A significantly lower vitamin D level was found in human immunodeficiency virus-TB-coinfected African patients receiving antiretroviral treatment who developed TB-associated immune reconstitution inflammatory syndrome vs those who did not develop TB-associated immune reconstitution inflammatory syndrome. VDD was associated with an increased risk of developing active TB in those subjects with latent TB infection and with an increased risk of tuberculin skin test conversion/TB infection conversion, and the trend toward a lower vitamin D level in active TB patients vs latent TB infection subjects did not reach statistical significance, indicating that VDD was more likely a risk factor than a consequence of TB. This concept was further strengthened by our result that anti-TB treatment did not affect vitamin D level in TB patients receiving the treatment. CONCLUSION: Our analyses revealed an association between vitamin D and TB. VDD is more likely a risk factor for TB than its consequence. More studies are needed to determine whether vitamin D supplementation is beneficial to TB prevention and treatment.
Assuntos
Tuberculose/sangue , Deficiência de Vitamina D/sangue , Antirretrovirais/uso terapêutico , Antituberculosos/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Humanos , Fatores de Risco , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Deficiência de Vitamina D/imunologiaRESUMO
This study sought to elucidate the effect of mechanical strain on the differentiation of mesenchymal stem cells into osteoblasts. Under the conditons of inducing osteoblasts, Immunohistochemical methods and RT-PCR technology were applied in osteogenic supplements medium to detect: (1) the expression of Alkaline phosphatase (ALP), Type I collagen (COL I ), Osterx (Osx) and Osteocalcin (OCN) mRNA, with cyclic strain (3%, 0.5 Hz) applied for 15 min, 30 min, 1 h, 2 h, 4 h, 3 d, 7 d, 14 d; (2) the expression of Osx mRNA and OCN mRNA with 3% strain for 1 h. The results showed: (1) ALP mRNA expression was higher at 7 days; COL I mRNA expression was greater obviously at 7 days and 14 days than that at 3 days and that of the unstrained cells; (2) the expression of Osx mRNA was up-regulated after 15min by strain stimulation,which was significantly increased at 30 min and 1 h in the unstrained cells. The expression of OCN mRNA was not affected in the unstrained cells at 15 min, whereas strain could promote the expression of OCN mRNA at this period. The expression of OCN mRNA was more obviously upregulated in the strained cells at 30 min and 1 h when compared with that in the unstrained cells; (3) the strain (1% and 3%) significantly promoted the expression of Osx mRNA; 10% strain had a little effect on Osx mRNA expression. The expression of OCN mRNA was up-regulated by 3% strain, whereas it had little effect at 1% and 10% strain. In summary, mechanical strain can promote the differentiation of mesenchymal stem cells into osteoblasts.