Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(13): e2107160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146899

RESUMO

Emerging noninvasive treatments, such as sonodynamic therapy (SDT) and chemodynamic therapy (CDT), have developed as promising alternatives or supplements to traditional chemotherapy. However, their therapeutic effects are limited by the hypoxic environment of tumors. Here, a biodegradable nanocomposite-mesoporous zeolitic-imidazolate-framework@MnO2 /doxorubicin hydrochloride (mZMD) is developed, which achieves enhanced SDT/CDT/chemotherapy through promoting oxidative stress and overcoming the multidrug resistance. The mZMD decomposes under both ultrasound (US) irradiation and specific reactions in the tumor microenvironment (TME). The mZM composite structure reduces the recombination rate of e- and h+ to improve SDT. MnO2 not only oxidizes glutathione in tumor cells to enhance oxidative stress, but also converts the endogenic H2 O2 into O2 to improve the hypoxic TME, which enhances the effects of chemotherapy/SDT. Meanwhile, the generated Mn2+ catalyzes the endogenic H2 O2 into ·OH for CDT, and acts as magnetic resonance imaging agent to guide therapy. In addition, dissociated Zn2+ further breaks the redox balance of TME, and co-inhibits the expression of P-glycoprotein (P-gp) with generated ROS to overcome drug resistance. Thus, the as-prepared intelligent biodegradable mZMD provides an innovative strategy to enhance SDT/CDT/chemotherapy.


Assuntos
Compostos de Manganês , Óxidos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Estresse Oxidativo , Óxidos/química , Microambiente Tumoral
2.
J Mater Chem B ; 10(4): 637-645, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34991154

RESUMO

Chemodynamic therapy (CDT) is an emerging approach to treat cancer based on the tumor microenvironment (TME), but its limited content of endogenous hydrogen peroxide (H2O2) weakens the anticancer effects. Herein, a multifunctional biomimetic nanozyme (Se@SiO2-Mn@Au/DOX, named as SSMA/DOX) is fabricated, which undergoes TME responsive self-cascade catalysis to facilitate MRI guided enhanced chemo/chemodynamic therapy. The SSMA/DOX nanocomposites (NCs) responsively degrade in acidic conditions of tumor to release Se, DOX, Au and Mn2+. Mn2+ not only enables MRI to guided therapy, but also catalyzes the endogenous H2O2 into hydroxyl radical (˙OH) for CDT. In addition, the Au NPs continuously catalyze glucose to generate H2O2, enhancing CDT by supplementing a sufficiently reactive material and cutting off the energy supply of the tumor by consuming glucose. Simultaneously, Se enhances the chemotherapy of doxorubicin hydrochloride (DOX) and CDT by upregulating ROS in the tumor cells, achieving remarkable inhibition effect towards tumor. Moreover, SSMA/DOX NCs have good biocompatibility and degradability, which avoid long-term toxicity and side effects. Overall, the degradable SSMA/DOX NCs provide an innovative strategy for tumor microenvironment responsive self-cascade catalysis to enhance tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Terapia Fototérmica , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Catálise , Linhagem Celular , Doxorrubicina/química , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Manganês/química , Manganês/farmacologia , Teste de Materiais , Ratos , Ratos Sprague-Dawley , Selênio/química , Selênio/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Microambiente Tumoral/efeitos dos fármacos
3.
J Nanobiotechnology ; 19(1): 382, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809618

RESUMO

BACKGROUND: Inflammatory osteolysis, a major complication of total joint replacement surgery, can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of proinflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (porous Se@SiO2 nanospheres) to manage inflammatory osteolysis. RESULTS: Macrophage membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) attenuated lipopolysaccharide (LPS)-induced inflammatory osteolysis via a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduced endotoxin levels and neutralized proinflammatory cytokines. Moreover, the release of Se could induce macrophage polarization toward the anti-inflammatory M2-phenotype. These effects were mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase (ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduced the inhibition of osteogenic differentiation caused by proinflammation cytokines, as confirmed through in vitro and in vivo experiments. CONCLUSION: Our findings suggest that M-Se@SiO2 have an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 are a promising engineered nanoplatform for the treatment of osteolysis occurring after arthroplasty.


Assuntos
Materiais Biomiméticos , Fatores Imunológicos , Macrófagos , Nanocompostos/química , Osteólise/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Imunoterapia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Porosidade , Células RAW 264.7 , Selênio/química , Selênio/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia
4.
Nutrients ; 13(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371826

RESUMO

BACKGROUND: Sarcopenia is a major health problem in older adults. Exercise and nutrient supplementation have been shown to be effective interventions but there are limited studies to investigate their effects on the management of sarcopenia and its possible underlying mechanisms. Here, we studied T cell gene expression responses to interventions in sarcopenia. METHODS: The results of this study were part of a completed trial examining the effectiveness of a 12-week intervention with exercise and nutrition supplementation in community-dwelling Chinese older adults with sarcopenia, based on the available blood samples at baseline and 12 weeks from 46 randomized participants from three study groups, namely: exercise program alone (n = 11), combined-exercise program and nutrition supplement (n = 23), and waitlist control group (n = 12). T cell gene expression was evaluated, with emphasis on inflammation-related genes. Real-time PCR (RT-PCR) was performed on CD3 T cells in 38 selected genes. Correlation analysis was performed to relate the results of gene expression analysis with lower limb muscle strength performance, measured using leg extension tests. RESULTS: Our results showed a significant improvement in leg extension for both the exercise program alone and the combined groups (p < 0.001). Nine genes showed significant pre- and post-difference in gene expression over 12 weeks of intervention in the combined group. Seven genes (RASGRP1, BIN1, LEF1, ANXA6, IL-7R, LRRN3, and PRKCQ) showed an interaction effect between intervention and gene expression levels on leg extension in the confirmatory analysis, with confounder variables controlled and FDR correction. CONCLUSIONS: Our findings showed that T cell-specific inflammatory gene expression was changed significantly after 12 weeks of intervention with combined exercise and HMB supplementation in sarcopenia, and that this was associated with lower limb muscle strength performance.


Assuntos
Suplementos Nutricionais , Exercício Físico/fisiologia , Expressão Gênica/genética , Sarcopenia/terapia , Linfócitos T/metabolismo , Valeratos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Análise Fatorial , Feminino , Humanos , Vida Independente , Extremidade Inferior/fisiopatologia , Masculino , Força Muscular/genética , Músculo Esquelético/fisiopatologia , Treinamento Resistido/métodos , Sarcopenia/genética , Resultado do Tratamento
5.
Adv Healthc Mater ; 10(10): e2002024, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33645002

RESUMO

Radiotherapy (RT) is a popular clinical therapy method for extending cancer patient survival, but is hampered by severe side effects and the weak therapy effect. Herein, responsive degradable selenium (Se) theranostic agents (Se@SiO2 @Bi nanocomposites (NCs)) are fabricated, which combine computed tomography (CT) imaging and simultaneously enhance the therapeutic effects of photothermal therapy (PTT) and RT, while reducing the side effects of radiation. The Se@SiO2 @Bi theranostic agents can accumulate at the tumor site, and responsively decompose to releease Se, avoiding systemic toxicity by the element. Se enhances the effect of PTT/RT, simultaneously reducing the side effects of RT. The Se@SiO2 @Bi NCs as CT agents also exhibit significantly enhanced contrast imaging performance due to the high atomic number of Bi. More importantly, the Se@SiO2 @Bi NCs can be rapidly excreted without long-term toxicity, owing to responsive degradation into ultrasmall particles (<5 nm) at the tumor site. In vitro and in vivo results show that the Se@SiO2 @Bi NCs can remarkably inhibit tumor cells, without causing appreciable toxicity during the treatment. This study opens a new perspective in rationally designing responsive degradable theranostic agents for future tumor therapy with enhanced therapeutic efficacy and lesser side effects.


Assuntos
Nanocompostos , Selênio , Humanos , Fototerapia , Medicina de Precisão , Dióxido de Silício , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA