RESUMO
Maize (Zea mays L.) is one of the most important food crops in the world. Drought is currently the most important abiotic factor affecting maize yield. L-arginine has emerged as a nontoxic plant growth regulator that enhances the tolerance of plants to drought. An experiment was conducted to examine the role of L-arginine in alleviating the inhibitory effects of drought on the photosynthetic capacity and activities of antioxidant enzymes when the plants were subjected to drought stress. The results showed that the biomass of maize seedlings decreased significantly under a 20% polyethylene glycol-simulated water deficit compared with the control treatment. However, the exogenous application of L-arginine alleviated the inhibition of maize growth induced by drought stress. Further analysis of the photosynthetic parameters showed that L-arginine partially restored the chloroplasts' structure under drought stress and increased the contents of chlorophyll, the performance index on an adsorption basis, and Fv/Fm by 151.3%, 105.5%, and 37.1%, respectively. Supplementation with L-arginine also reduced the oxidative damage caused by hydrogen peroxide, malondialdehyde, and superoxide ions by 27.2%, 10.0%, and 31.9%, respectively. Accordingly, the activities of ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, peroxidase, and superoxide dismutase increased by 11.6%, 108.5%, 104.4%, 181.1%, 18.3%, and 46.1%, respectively, under drought. Thus, these findings suggest that L-arginine can improve the drought resistance of maize seedlings by upregulating their rate of photosynthesis and their antioxidant capacity.
RESUMO
Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.
Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Osteogênese/genética , Osteogênese/efeitos da radiação , Células da Medula Óssea , Células-Tronco Mesenquimais/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células CultivadasRESUMO
Silicate-substituted calcium phosphate (Si-CaP) ceramics, alternative materials for autogenous bone grafting, exhibit excellent osteoinductivity, osteoconductivity, biocompatibility, and biodegradability; thus, they have been widely used for treating bone defects. However, the limited control over the spatial structure and weak mechanical properties of conventional Si-CaP ceramics hinder their wide application. Here, we used digital light processing (DLP) printing technology to fabricate a novel porous 3D printed Si-CaP scaffold to enhance the scaffold properties. Scanning electron microscopy, compression tests, and computational fluid dynamics simulations of the 3D printed Si-CaP scaffolds revealed a uniform spatial structure, appropriate mechanical properties, and effective interior permeability. Furthermore, compared to Si-CaP groups, 3D printed Si-CaP groups exhibited sustained release of silicon (Si), calcium (Ca), and phosphorus (P) ions. Furthermore, 3D printed Si-CaP groups had more comprehensive and persistent osteogenic effects due to increased osteogenic factor expression and calcium deposition. Our results show that the 3D printed Si-CaP scaffold successfully improved bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, and osteogenic differentiation and possessed a distinct apatite mineralization ability. Overall, with the help of DLP printing technology, Si-CaP ceramic materials facilitate the fabrication of ideal bone tissue engineering scaffolds with essential elements, providing a promising approach for bone regeneration.
Assuntos
Osteogênese , Engenharia Tecidual , Apatitas , Regeneração Óssea , Cálcio , Fosfatos de Cálcio/química , Proliferação de Células , Preparações de Ação Retardada , Fósforo , Porosidade , Impressão Tridimensional , Silicatos/química , Silício , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
Recent studies have shown that the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteogenic lineages can promotes bone formation and maintains bone homeostasis, which has become a promising therapeutic strategy for skeletal diseases such as osteoporosis. Fructus Ligustri Lucidi (FLL) has been widely used for the treatment of osteoporosis and other orthopedic diseases for thousands of years. However, whether FLL plays an anti-osteoporosis role in promoting the osteogenic differentiation of BMSCs, as well as its active components, targets, and specific molecular mechanisms, has not been fully elucidated. First, we obtained 13 active ingredients of FLL from the Traditional Chinese Medicine Systems Pharmacology (TCSMP) database, and four active ingredients without any target were excluded. Subsequently, 102 common drug-disease targets were subjected to protein-protein interaction (PPI) analysis, Gene Oncology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results of the three analyses were highly consistent, indicating that FLL promoted the osteogenic differentiation of BMSCs by activating the PI3K/AKT signaling pathway. Finally, we validated previous predictions using in vitro experiments, such as alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot analysis of osteogenic-related proteins. The organic combination of network pharmacological predictions with in vitro experimental validation comprehensively confirmed the reliability of FLL in promoting osteogenic differentiation of BMSCs. This study provides a strong theoretical support for the specific molecular mechanism and clinical application of FLL in the treatment of bone formation deficiency.
Assuntos
Ligustrum , Células-Tronco Mesenquimais , Osteoporose , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteogênese , Osteoporose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Reprodutibilidade dos TestesRESUMO
Panax notoginseng saponins (PNS) have been reported to have good anti-inflammatory effects. However, the anti-inflammatory effect mechanism in rheumatoid arthritis (RA) remains unknown. The focus of this research was to investigate the molecular mechanism of PNS in the treatment of RA. The primary active components of PNS were tested utilizing the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Analysis Platform based on oral bioavailability and drug-likeness. The target databases for knee osteoarthritis were created using GeneCards and Online Mendelian Inheritance in Man (OMIM). The visual interactive network structure 'active component - action target - illness' was created using Cytoscape software. A protein interaction network was built, and associated protein interactions were analyzed using the STRING database. The key targets were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analyses. The effects of PNS on cell growth were studied in human umbilical vein endothelial cells (HUVECs) treated with various doses of PNS, and the optimum concentration of PNS was identified. PNS was studied for its implication on angiogenesis and migration. The active components of PNS had 114 common targets, including cell metabolism and apoptosis, according to the network analysis. The therapeutic effects of the PNS components were suggested to be mediated through apoptotic and cytokine signaling pathways. In vitro, PNS therapy boosted HUVEC proliferation. Wound healing, Boyden chamber and tube formation tests suggested that PNS may increase HUVEC activity and capillary-like tube branching. This study clarified that for the treatment of RA, PNS has multisystem, multicomponent, and multitargeted properties.
Assuntos
Artrite Reumatoide , Panax notoginseng , Saponinas , Humanos , Saponinas/farmacologia , Farmacologia em Rede , Artrite Reumatoide/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Medicina Tradicional Chinesa , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento MolecularRESUMO
A rapid and specific liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed for the simultaneous determination of two active diterpenoids: Kirenol and ent-16ß,17-dihydroxy-kauran-19-oic acid (DHKA) from Herba Siegesbeckiae in rat plasma using osthole as an internal standard (IS). Plasma sample pretreatment involved a one-step liquid-liquid extraction with ethyl acetate. Chromatographic separation was performed on a Waters Symmetry C18 column (2.1mm×100mm, 3.5µm) with isocratic elution using methanol-5mmol/L aqueous ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.2mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode under positive and negative electrospray ionization. The calibration curves were linear over the range of 50.0-25,000ng/mL for Kirenol, and 25.0-12,500ng/mL for DHKA. The extraction recoveries of the two analytes and the IS were all over 85%. The intra- and inter-day precision (relative standard deviation) values were less than 16.8% and the accuracy (relative error) ranged from -10.7 to 10.6% at four quality control levels. The validated method was successfully applied to a comparative pharmacokinetic study of the two diterpenoids in rat plasma after intragastric administration of Kirenol, DHKA and Herba Siegesbeckiae extract. The results showed that there were obvious differences between the pharmacokinetic behaviors after oral administration of Herba Siegesbeckiae extract compared with each of the substances alone.