Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Ethnopharmacol ; 311: 116466, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031821

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence of renal fibrosis caused by chronic kidney disease is increasing year by year. Preventing the activation and conversion of kidney-intrinsic fibroblasts to a myofibroblast phenotype is an important target for blocking the development of renal interstitial fibrosis. Our team established a stable renal interstitial fibrosis cell model in the early stage, and the screening results showed that GPs has good anti-fibrosis potential. At this stage, only a few literatures have reported its anti-fibrosis effect, and the mechanism of action is still unclear. AIM OF THE STUDY: The massive synthesis and secretion of extracellular-matrix (ECM) components by activated fibroblasts in the kidneys causes irreversible renal interstitial fibrosis. Gypenosides (GPs) have been shown to decelerate this process, in which micro RNAs (miRNAs) play an important regulatory role. This study aimed to evaluate the mechanism underlying the suppressive effect of GPs on renal fibrosis. MATERIALS AND METHODS: This study used TGF-ß1-stimulated NRK-49F renal cells as an in-vitro model of renal interstitial fibrosis. First, the concentration range of GPs that significantly affects the cytoactive was determined. Then, the anti-fibrotic effects of various concentrations of GPs in the in-vitro model were assessed via immunofluorescence, western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Non-coding-RNA sequencing combined with bioinformatics was used to predict the mechanistic basis of the anti-fibrotic effect of GPs, and qRT-PCR was used to verify the sequencing results and bioinformatic predictions. The identified relationships of the anti-fibrotic effect of GPs with miR-378a-5p and the PI3K/AKT signaling were evaluated using a miR-NC mimic and the PI3K inhibitor LY294002 as controls, respectively. RESULTS: TGF-ß1 stimulation up-regulated α-SMA, COL1, and COL3 in NRK-49F cells, and this effect was suppressed by GPs. Additionally, TGF-ß1 stimulation significantly changed the expression levels of 151 miRNAs, and GPs significantly suppressed the effect of TGF-ß1 on the levels of 18 of these miRNAs. Among them, miR-3588 and miR-378a-5p were down-regulated, and miR-135b-5p and miR-3068-5p were up-regulated upon TGF-ß1 induction. Of these miRNAs, miR-378a-5p was predicted to target the mRNAs of numerous proteins mainly enriched in the PI3K/AKT signaling pathway. The miRNA transfection experiments with the miR-NC mimic and PI3K inhibitor as controls showed that miR-378a-5p overexpression could suppress the TGF-ß1-induced up-regulation of α-SMA, COL1, PI3K, and AKT, including the phosphorylated form (p-AKT). CONCLUSION: GPs inhibit the PI3K/AKT signaling by up-regulating miR-378a-5p in TGF-ß1-stimulated NRK-49F cells and thereby reduce their massive secretion of ECM components. Given that this in-vitro model of renal interstitial fibrosis closely mimics the in-vivo pathogenesis, our results most likely apply to the in-vivo conditions.


Assuntos
Nefropatias , MicroRNAs , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Rim , Transdução de Sinais , Nefropatias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose
3.
Artigo em Inglês | MEDLINE | ID: mdl-34457027

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) causes low fertility in females. Coptis chinensis (C. chinensis) is used to clear heat and dampness, purify fire, and detoxify in traditional Chinese medicine (TCM). Although C. chinensis has demonstrated efficacy against PCOS in clinical practice, there are no available data regarding the bioactive components of C. chinensis, their targets, and molecular mechanisms underlying their effects. METHODS AND RESULTS: Network pharmacology was used to analyze the bioactive components of C. chinensis, their targets, and signaling pathways underlying their effects. The TCM systems pharmacology database and analysis platform (TCMSP) was used to screen 14 effective active ingredients and 218 targets of C. chinensis. The GeneCards, OMIM, and PharmGkb databases were used to screen 3517 disease targets for PCOS, and 102 common targets of drugs and diseases were screened using R Cytoscape that was utilized to build a drug-active ingredient-disease target interaction network, and the STRING platform was utilized to construct a common target protein-protein interaction network, including 102 nodes and 221 edges. Key targets of C. chinensis for the treatment of PCOS included JUN, MAPK, IL6, CXCL8, FOS, and IL1B. A total of 123 gene ontology (GO) terms and 129 pathways were acquired by GO and KEGG enrichment analyses. The AGEs/RAGE, TNF, IL-17, MAPK, and HIF-1 signaling pathways were closely related to PCOS and may be the core pathways involved in PCOS. Schrodinger software was used to evaluate the interaction between active components and their targets and explore binding modes. Furthermore, based on the prediction of network pharmacology study, a mouse model of PCOS was established to evaluate the curative role and underlying mechanisms of C. chinensis. The results showed that C. chinensis treatment reversed histopathological damage of the ovary and also ameliorated the mRNA and protein expression levels of the predicted hub targets (MAPK1, CXCL8, IL-6, and IL-1ß). These results indicated that WZYZP has a protective effect on spermatogenesis disorder, suggesting that it could be an alternative choice for male infertility therapy. CONCLUSIONS: This preliminary study verified the basic pharmacological effects and mechanisms of C. chinensis, a TCM, in the treatment of PCOS. These results indicate that the therapeutic effects of C. chinensis on PCOS may be achieved by regulating the expression of inflammatory factors. This study provides new insights for the systematic exploration of the mechanism of traditional Chinese medicine.

4.
Int J Med Sci ; 17(18): 3125-3145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173434

RESUMO

The use of multipronged measures, including traditional Chinese medicine (TCM), has greatly increased in response to the COVID-19 pandemic, and we found the use of TCM and is positively correlated with the regional cure rate in China (R=0.77, P<10-5). We analyzed 185 commonly administered TCM recipes comprised of 210 herbs nationwide to reveal mechanistic insight. Eight out of the 10 most commonly used herbs showed anti-coronavirus potential by intersecting with COVID-19 targets. Intriguingly, 17 compounds from the 5 most commonly used herbs were revealed to have direct anti-SARS-CoV-2 potential by docking with the two core structures [CoV spike (S) glycoprotein (6SVB) and CoV 3CL hydrolase (6LU7)]. Seven reported COVID-19 drugs served as positive controls; among them, retionavir (-7.828 kcal/mol) and remdesivir (-8.738 kcal/mol) performed best with 6VSB and 6LU7, respectively. The top candidate was madreselvin B (6SVB: -8.588 kcal/mol and 6LU7: -9.017 kcal/mol), an appreciable component of Flos Lonicerae. Eighty-six compounds from 22 unlisted herbs were further identified among 2,042 natural compounds, completing our arsenal for TCM formulations. The mechanisms have been implicated as multifactorial, including activation of immunoregulation (Th2, PPAR and IL10), suppression of acute inflammatory responses (IL-6, IL-1α/ß, TNF, COX2/1, etc.), enhancement of antioxidative activity (CAT and SOD1), and modulation of apoptosis (inhibited CASP3). It is of interest to understand the biological mechanisms of TCM recipes. We then analyzed 18 representative remedies based on molecular targets associated with 14 medical conditions over the disease course, e.g., pyrexia, coughing, asthenia, lymphopenia, cytokine storm, etc. The significant level of coherence (SLC) revealed, in part, the potential uses and properties of corresponding TCMs. Thus, herbal plants coordinate to combat COVID-19 in multiple dimensions, casting a light of hope before effective vaccines are developed.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Fitoterapia/métodos , Pneumonia Viral/tratamento farmacológico , Algoritmos , Antivirais/isolamento & purificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Desenvolvimento de Medicamentos , Medicamentos de Ervas Chinesas/classificação , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Pandemias , Fitoterapia/classificação , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tratamento Farmacológico da COVID-19
5.
Am J Chin Med ; 48(4): 923-944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32436424

RESUMO

Chronic insomnia is a disease which brings intense mental pain and disturbing complications to patients worldwide. The oral microbiome exhibits a mechanistic influence on human health. Therefore, it is crucial to understand the oral microbial diversity in insomnia. Tongue diagnosis has been considered a critical basic procedure in insomnia therapeutic decision-making in Traditional Chinese Medicine (TCM). Hence, it is significant to elucidate the various oral microbiome differences in chronic insomnia patients with different tongue features. In this paper, we used 16S rRNA gene sequencing and bioinformatics analysis to investigate dynamic changes in oral bacterial profile and correlations between chronic insomnia patients and healthy individuals, as well as in patients with different tongue coatings. Moreover, the relationship between the severity of insomnia and oral microbiota was explored. Our findings showed that chronic insomnia patients harbored a significantly higher diversity of oral bacteria when compared to healthy controls. More importantly, the results revealed that the diversity and relative abundance of the bacterial community was significantly altered among different tongue coatings in patients but not in healthy individuals. Oral bacteria with a relative abundance [Formula: see text]1% and [Formula: see text] among different tongue groups were considered remarkable bacteria, which included three phyla Proteobacteria, Bacteroidetes, Gracilibacteria, and four genera, Streptococcus, Prevotella_7, Rothia, and Neisseria. Our findings indicate that changes in oral microbiome correlate with tongue coatings in patients with chronic insomnia. Thus, the remarkable microbiome may provide inspiration for further studies on the correlation between tongue diagnosis and oral microbiome in chronic insomnia patients.


Assuntos
Bactérias/isolamento & purificação , Medicina Tradicional Chinesa , Distúrbios do Início e da Manutenção do Sono/microbiologia , Distúrbios do Início e da Manutenção do Sono/patologia , Língua/microbiologia , Língua/patologia , Adolescente , Adulto , Idoso , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S , Risco , Índice de Gravidade de Doença , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-30050593

RESUMO

Renal fibrosis is thought to be the final common pathway leading to chronic kidney disease (CKD) and end-stage renal failure. Except for renal replacement therapy, no adequate treatment regimen is available; therefore studies on the treatment of renal fibrosis have attracted significant interest. In recent years, studies have shown that traditional Chinese medicine (TCM) may represent an attractive source to produce drugs with antifibrosis effects. The aim of this study was to establish a robust cell-based high-content screening (HCS) approach to identify TCM compounds with antifibrosis effects in NRK49F cells following TGF-ß1 exposure. When designing the model, one of the most important steps involved the stability and reproducibility of this cell-based model. Therefore, we initially optimized the experimental parameters. Then, our HCS model was validated using SB525334, an inhibitor of the TGF-ß1 receptor, and curcumin and emodin, two TCM compounds with well-documented anti-renal fibrosis activity. Subsequently, the proven reliable HCS model was used to screen a standard TCM compound library, which included 344 TCM molecules. Based on our HCS algorithm, a total of 16 compounds were identified to have prospective inhibitory activity. These compounds were further validated by verification experiments. Strikingly, eight compounds have been shown to inhibit renal fibrosis; six of them had rarely been described in the literature, namely, Ligustrazine, Glycyrrhizic acid, Astragaloside iv, Hydroxysafflor Yellow A, Crocin, and Gypenosides. To the best of our knowledge, this is the first study in which a HCS assay was performed to identify TCM compounds with anti-renal fibrosis effects. The HCS approach was successfully applied to screen active compounds and will be propitious to further anti-renal fibrosis drugs discovery research. Meanwhile, it may offer possibilities for identifying lead compounds for treating other diseases from registered Chinese herbal medicines.

7.
BMC Complement Altern Med ; 18(1): 118, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609586

RESUMO

BACKGROUND: Accumulating evidence suggests that Fructus Ligustri Lucidi (FLL) plays a beneficial role in preventing the development of osteoporosis. However, the effects of FLL on estrogen receptor (ER) α and ERß expressions remain unknown. Therefore, in the current study we attempted to probe into the effects of FLL on ERα and ERß expressions in femurs, tibias and uteri of ovariectomized (OVX) rats. METHODS: The OVX rats were orally administrated with FLL water extract (3.5 g/kg/day) for 12 weeks. The uteri, femurs, tibias and serum were harvested from rats. The serum levels of estrogen (E2), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were determined by ELISA. The expressions of ERα and ERß in the femurs and tibias as well as uteri were analysed by western blot and immunohistochemical staining. RESULTS: FLL treatment did not increase uterus relative weight in OVX rats. Further, FLL treatment increased ERα expression in the femurs and tibias, and enhanced ERß expression in the uteri of OVX rats. However, the resulted expression of ERα was stronger than that of ERß in OVX rats in response to FLL treatment. Meanwhile, administration with FLL to OVX rats increased FSH and LH but did not increase E2 level in the serum. CONCLUSION: FLL treatment shows tissue selection on ERα and ERß expressions in the femurs and tibias as well as uteri of OVX rats without uterotrophic effect, which may offer the scientific evidence of the efficiency and safety of its clinical application.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Ligustrum/química , Osteoporose/metabolismo , Receptores de Estrogênio/metabolismo , Útero/efeitos dos fármacos , Animais , Estrogênios/sangue , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Hormônio Foliculoestimulante/sangue , Frutas , Imuno-Histoquímica , Hormônio Luteinizante/sangue , Ovariectomia , Ratos , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Útero/metabolismo
8.
Biomed Res Int ; 2017: 2418671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546962

RESUMO

Curcumin, a polyphenol derived from the turmeric, has received attention as a potential treatment for renal fibrosis primarily because it is a relatively safe and inexpensive compound that contributes to kidney health. Here, we review the literatures on the applications of curcumin in resolving renal fibrosis in animal models and summarize the mechanisms of curcumin and its analogs (C66 and (1E,4E)-1,5-bis(2-bromophenyl) penta-1,4-dien-3-one(B06)) in preventing inflammatory molecules release and reducing the deposition of extracellular matrix at the priming and activation stage of renal fibrosis in animal models by consulting PubMed and Cnki databases over the past 15 years. Curcumin exerts antifibrotic effect through reducing inflammation related factors (MCP-1, NF-κB, TNF-α, IL-1ß, COX-2, and cav-1) and inducing the expression of anti-inflammation factors (HO-1, M6PRBP1, and NEDD4) as well as targeting TGF-ß/Smads, MAPK/ERK, and PPAR-γ pathways in animal models. As a food derived compound, curcumin is becoming a promising drug candidate for improving renal health.


Assuntos
Curcumina/uso terapêutico , Fibrose/prevenção & controle , Inflamação/prevenção & controle , Nefropatias/prevenção & controle , Animais , Fibrose/dietoterapia , Fibrose/genética , Fibrose/patologia , Humanos , Inflamação/dietoterapia , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/dietoterapia , Nefropatias/genética , Nefropatias/patologia , Modelos Animais , NF-kappa B/genética , Fator de Crescimento Transformador beta/genética
9.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 46(1): 7-14, 2017 01 25.
Artigo em Chinês | MEDLINE | ID: mdl-28436625

RESUMO

Objective: To investigate the effect of crocin on the progression and generalized seizure of temporal lobe epilepsy in mice. Methods: Hippocampus rapid kindling model was established in C57BL/6J mice. The effects of crocin on seizure stage, afterdischarge duration (ADD), number of stimulation in each stage and final state, the incidence of generalized seizure (GS), average seizure stage and ADD were observed. Results: Crocin (20 mg/kg) significantly retarded behavioral seizure stages ( P<0.05) and shortened cumulative ADD ( P<0.01) during hippocampus rapid kindling acquisition in mice compared with vehicle group. Meanwhile, number of stimulations in stage 1-2 was significantly increased ( P<0.05) and the incidence of fully kindled animals was significantly decreased ( P<0.01). However, 10 or 50 mg/kg crocin showed no significant effect on the above indexes (all P>0.05). Crocin (100 or 200 mg/kg) significantly decreased the incidence of GS (all P<0.01) and reduced average seizure stages (all P<0.01) in fully-kindled mice compared with vehicle group; Fifty mg/kg crocin only reduced average seizure stages ( P<0.05). Conclusion: Low-dose crocin can retard the progression in hippocampus rapid kindling acquisition in mice, while high-dose crocin relieves the GS in fully-kindled mice, which suggests that crocin may be a potential anti-epileptic compound.


Assuntos
Carotenoides/farmacologia , Carotenoides/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Excitação Neurológica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Excitação Neurológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA