Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 6998-7009, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602777

RESUMO

Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.


Assuntos
Desenvolvimento Econômico , Fósforo , China , Fertilizantes , Agricultura
2.
Environ Res ; 184: 109319, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151842

RESUMO

Phosphorus (P) is an essential and limiting nutrient for agricultural systems, where the demand for agricultural products such as food, feed, and bio-fuel are the major drivers of the intensification of agricultural production systems. Globally, maize is one of three main cereal crops, a main feedstock for animal production and a substrate for the production of bio-ethanol. This study investigated P flows through the multiple utilization systems of maize (as represented by the subsystems of food, feed and energy production) at a crop level of 2016 as reference year and made future predictions of P flows for the year 2030 based on different scenarios for food-feed-energy systems in China. For 2016, the subsystem of animal production resulted in the highest waste of P due to inappropriate manure management, but the subsystem of value-added products (Bio-fuel production, distillers dried grains with solubles (DDGS), maize-oil) showed the lowest P use efficiency (39%). From the value-added subsystem, 17% of P from the process flow to the subsystem of animal production as DDGS, and 61% of P is wasted associated with wastewater and sludge. Future scenarios of structural adjustments in the maize consumption system predict that the supply of maize for animal feed will be threatened if the policy of the Biofuel National Promotion before 2020 is fully implemented in China, as current maize production will not meet the future demand of food, feed and energy simultaneously. The results emphasized the use of P waste resources and better sludge management from a systems perspective. This also implied the importance of exploring coordinated development and integrated strategies for sustainable P flow management in multiple utilization systems.


Assuntos
Fósforo , Zea mays , Ração Animal/análise , Animais , China , Grão Comestível/química , Fósforo/análise
3.
Bioresour Technol ; 101(15): 6265-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20363119

RESUMO

This study investigated the temperature influence on intracellular absorption and extra-cellular phosphorus removal by extra-cellular polymeric substance (EPS) in enhanced biological phosphorus removal (EBPR) process. Three sequencing batch reactors (SBRs) were operated in anaerobic/aerobic sequence at 5.0, 15.0 and 25.0 degrees C. Phosphorus removed by intracellular absorption was demonstrated as the dominant part (>80%) in total phosphorus removal operated under different temperatures and the highest total phosphorus removal rate of 95% was obtained due to the highest intracellular phosphorus absorption of 18.2mg P in a typical cycle at 15.0 degrees C. Phosphorus removed by EPS removal achieved the highest value at 5.0 degrees C (2.4 mg P/cycle), which resulted in a higher total phosphorus removal rate at 5.0 degrees C (90%) than that at 25.0 degrees C (83%). Low temperature was propitious to EPS phosphorus removal, accounting for 13% of total phosphorus removal at 5.0 degrees C, which could be mainly due to magnesium phosphate precipitation.


Assuntos
Reatores Biológicos/microbiologia , Fósforo/isolamento & purificação , Fósforo/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Temperatura Alta , Fósforo/química , Poluentes Químicos da Água/isolamento & purificação
4.
Huan Jing Ke Xue ; 30(1): 80-4, 2009 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-19353861

RESUMO

Enhanced biological phosphorus removal (EBPR) process was operated in a laboratory-scale sequencing batch reactor (SBR) for one-month fed with acetate as the carbon source. The characteristic and the microbial population structure and space distribution dynamics of phosphate-accumulating organisms (PAOs) of start-up period were analyzed by fluorescent in situ hybridization (FISH). The relationship between enrichment of PAOs and phosphorus removal was discussed. PAOs could be enriched by recirculation activated sludge containing heterotrophs through anaerobic aerobic conditions. Portion of PAOs in the sludge increase from 11.5% to 40.48%. Bacteria population competition lasted 34 days. It started from PAOs replacing heterotrophs which cost 5 days then followed by 19 days intra-specific competition of PAOs. The last step was re-increasing of PAOs predominance. Phosphorus uptake by the enriched microbial community was not observed immediately. An accumulating-phase was necessary for PHA and poly-P storage. A lag-stage of 4-8 days existed when taking the performance of the reactor into consideration. Phosphorus removal by the predominant PAOs through intra-specific competition was achieved after accumulating-phase too. The FISH picture indicated that in the quickly growing phase PAOs cells were small and community structure was loose. The latter "accumulating-phase" cells became larger and the community structure clustered densely. This stage presented by better reactor performance.


Assuntos
Reatores Biológicos/microbiologia , Fósforo/metabolismo , Proteobactérias/genética , Proteobactérias/fisiologia , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Biodegradação Ambiental , DNA Bacteriano/análise , Hibridização in Situ Fluorescente , Fósforo/isolamento & purificação , Proteobactérias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA