Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1211259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346749

RESUMO

Objectives: Inflammatory bowel disease (IBD) is a chronic lifelong inflammatory disease. Probiotics such as Bifidobacterium longum are considered to be beneficial to the recovery of intestinal inflammation by interaction with gut microbiota. Our goals were to define the effect of the exclusive use of BAA2573 on dextran sulfate sodium (DSS)-induced colitis, including improvement of symptoms, alleviation of histopathological damage, and modulation of gut microbiota. Methods: In the present study, we pretreated C57BL/6J mice with Bifidobacterium longum BAA2573, one of the main components in an over-the-counter (OTC) probiotic mixture BIFOTO capsule, before modeling with DSS. 16S rDNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomic profiling were performed with the collected feces. Results: We found that pretreatment of Bifidobacterium longum BAA2573 given by gavage significantly improved symptoms and histopathological damage in DSS-induced colitis mice. After the BAA2573 intervention, 57 genera and 39 metabolites were significantly altered. Pathway enrichment analysis demonstrated that starch and sucrose metabolism, vitamin B6 metabolism, and sphingolipid metabolism may contribute to ameliorating colitis. Moreover, we revealed that the gut microbiome and metabolites were interrelated in the BAA2573 intervention group, while Alistipes was the core genus. Conclusion: Our study demonstrates the impact of BAA2573 on the gut microbiota and reveals a possible novel adjuvant therapy for IBD patients.

2.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3312-3320, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36601836

RESUMO

The stoichiometry characteristics of carbon (C), nitrogen (N), and phosphorus (P) is an important indicator of soil quality and ecosystem nutrient limitations. Exploring the effects of land use type and soil depth on soil nutrient stoichiometry can clarify soil nutrient cycling. In this study, we collected soil samples from sites with five different land use types (irrigated cropland, rainfed cropland, sandy grassland, fixed dunes, and mobile dunes) in the Horqin Sandy Land, and evaluated the influences of land use type and soil depth on the contents and stoichiometry characteristics of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP). We found that: 1) SOC (3.23 g·kg-1), TN (0.37 g·kg-1), and TP (0.15 g·kg-1) contents and stoichiometry characteristics (C:N, C:P, N:P was 9.07, 25.56, 2.97, respectively) to a depth of 10 cm in the Horqin Sandy Land were significantly lower than the mean values of soils in China. 2) Soil stoichiometry characteristics differed significantly among land use types. The contents of SOC, TN, and TP to a depth of 100 cm were highest in irrigated cropland, followed by sandy grassland, rainfed cropland, fixed dunes, and mobile dunes. The C:N ratios in sandy grassland, irrigated cropland, and rainfed cropland were significantly higher than those in the fixed dune and mobile dune sites. C:P ratios in the sandy grassland, fixed dunes, irrigated cropland, and rainfed cropland were significantly higher than that in the mobile dunes. The N:P ratio differed little among the five land use types. 3) SOC and TN contents in the sandy grassland, fixed dunes, irrigated cropland, and rainfed cropland decreased with increasing soil depth. SOC, TN, and C:P in the mobile dunes and TP and C:N in all land use types showed no variation among depths. The C:P ratio of sandy grassland, fixed dunes, irrigated cropland, and rainfed cropland and the N:P ratio of sandy grassland decreased with increasing soil depth. 4) SOC, TN, and TP contents and the C:N ratio were significantly negatively correlated with the contents of medium and fine sands and with soil bulk density, but significantly positively correlated with silt+clay, and very fine sand contents. Desertification led to losses of SOC and nutrients in the Horqin Sandy Land, and exacerbated soil N deficiency. Inputs of water and ferti-lizer helped cropland to maintain a relatively high level of soil nutrients.


Assuntos
Ecossistema , Solo , Areia , Carbono/análise , China , Nitrogênio/análise , Fósforo
3.
J Mol Neurosci ; 37(2): 97-110, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18581269

RESUMO

The underlying mechanism for electroacupuncture (EA) associated functional improvement in patients suffering from spinal cord injury (SCI) is largely unknown. Collateral sprouting is one plausible factor, where the cord microenvironment may contribute greatly. The present study evaluated the effects of EA on collateral sprouting from spared dorsal root ganglion (DRG), sensory functional restorations, and differential gene expressions in spinal cord after partial DRG removal in the rat. Following EA, N1 waveform latencies for cortical somatosensory evoked potential significantly shortened. The densities of terminal sprouting from the spared DRG significantly increased on the EA versus the non-EA side. Microarray analysis revealed that several genes were upregulated on the acupunctured side at different time points; they were ciliary neurotrophic factor (CNTF) at 1 day postoperation (dpo), fibroblast growth factor (FGF)-1, insulin-like growth factor (IGF) 1 receptor, neuropeptide Y, and FGF-13 at 7 dpo, and CNTF and calcitonin gene-related polypeptide-alpha at 14 dpo, respectively. Meanwhile, five genes (CNTF, p75-like apoptosis-inducing death domain protein, IGF-1, transforming growth factor-beta 2, and FGF-4) were downregulated at 7 dpo. Furthermore, reverse transcriptase polymerase chain reaction results supported the gene chip analysis. It was concluded that the EA induced sensory functional restorations following partial DRG ganglionectomies could be brought about by intraspinal sprouting from the spared DRG, as well as multiple differential gene expressions in the spinal cord. The results could have clinical application in EA treatment of patients after spinal injury.


Assuntos
Eletroacupuntura , Gânglios Espinais/fisiologia , Perfilação da Expressão Gênica , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Animais , Denervação , Potenciais Somatossensoriais Evocados/fisiologia , Ganglionectomia , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traumatismos da Medula Espinal/fisiopatologia
4.
Neurosci Res ; 59(4): 399-405, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17875332

RESUMO

This study evaluated the effect of electro-acupuncture (EA) on the NGF, BDNF and NT-3 expression in spared L6 dorsal root ganglion (DRG) in cats subjected to bilateral removal of L1-L5 and L7-S2 DRG, using immunostaining, in situ hybridization and RT-PCR. The positive products of NGF, NT-3 protein and mRNA in the small and large neurons of spared L6 DRG in EA side increased greatly more than that of control side, while the increased BDNF was only noted in small and medium-sized neurons. RT-PCR demonstrated that the mRNA level for three factors was not influenced by EA in intact DRG, when a significant increase was seen in the spared L6 DRG of EA side. As it has been well known that DRG neurons project to the spinal cord wherein morphological plasticity has been present after DRG removal, the present results might have some bearing to the observed phenomenon.


Assuntos
Eletroacupuntura/métodos , Gânglios Espinais/metabolismo , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Neurônios Aferentes/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Gatos , Tamanho Celular , Denervação , Lateralidade Funcional/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/lesões , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Imuno-Histoquímica , Vértebras Lombares , Masculino , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/citologia , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , RNA Mensageiro/metabolismo , Resultado do Tratamento , Regulação para Cima/fisiologia
5.
Neurochem Res ; 32(8): 1415-22, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17406982

RESUMO

Neuroplasticity of the spinal cord following electroacupuncture (EA) has been demonstrated although little is known about the possible underlying mechanism. This study evaluated the effect of EA on expression of neurotrophins in the lamina II of the spinal cord, in cats subjected to dorsal rhizotomy. Cats received bilateral removal of L1-L5 and L7-S2 dorsal root ganglia (DRG, L6 DRG spared) and unilateral EA. They were sacrificed 7 days after surgery, and the L6 spinal segment removed and processed by immunohistochemistry and in situ hybridization histochemistry, to demonstrate the expression of neurotrophins. Significantly greater numbers of nerve growth factor (NGF) and neurotrophin-3 (NT-3) positive neurons, brain-derived neurotrophic factor (BDNF) immunoreactive varicosities and NT-3 positive neurons and glial cells were observed in lamina II on the acupunctured (left) side, compared to the non-acupunctured, contralateral side. Greater number of neurons expressing NGF mRNA was also observed on the acupunctured side. No signal for mRNA to BDNF and NT-3 was detected. The above findings demonstrate that EA can increase the expression of endogenous NGF at both the mRNA and protein level, and BDNF and NT-3 at the protein level. It is postulated that EA may promote the plasticity of the spinal cord by inducing increased expression of neurotrophins.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Eletroacupuntura , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo , Rizotomia , Medula Espinal/metabolismo , Animais , Gatos , Hibridização In Situ , Masculino , Fator de Crescimento Neural/genética , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Medula Espinal/citologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA