Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 321: 117569, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086513

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS: The N2a cells treated with amyloid ß (Aß) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS: Tian-Si-Yin was shown to improve cell viability of Aß-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aß deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS: This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aß level, tau pathology and synaptic disorder by regulating inflammatory response.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/tratamento farmacológico , Caenorhabditis elegans/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Camundongos Transgênicos , Aprendizagem em Labirinto , Precursor de Proteína beta-Amiloide/metabolismo , Transtornos da Memória/tratamento farmacológico , Modelos Animais de Doenças
2.
Neuroreport ; 23(16): 952-7, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23032400

RESUMO

Previous studies have indicated that estrogen protects the brain from ischemic damage and regulates K(ATP) channel activity; the present study was designed to address the involvement of K(ATP) channels in the neuroprotective effects of estrogen in focal cerebral ischemia: in experiment 1, K(ATP) mRNA and protein in the cortices of rats were compared among groups of ovariectomized rats (Ovx-1), Sham-operated rats (Sham-1), and ovariectomized rats administered 17ß-estradiol (Estr-1). In experiment 2, neurobehavioral scores and infarct volume of rats were evaluated after middle cerebral artery occlusion in ovariectomized rats (Ovx-2), Sham-operated rats (Sham-2), ovariectomized female rats administered 17ß-estradiol (Estr-2), and ovariectomized rats administered both 17ß-estradiol and stereotactic injections of glibenclamide (Estr+G). Our results showed that the Kir6.2 and SUR1 mRNA and protein levels in the brain cortices of female ovariectomized rats were lower than those in Sham rats. However, the expression levels of Kir6.2 and SUR1 in brain cortices of ovariectomized rats recovered after supplementation with 17ß-estradiol. The protective effects of 17ß-estradiol were abolished by glibenclamide, a K(ATP) channel blocker. This indicates that estradiol significantly upregulates the expression of K(ATP) channel subunits and channel activity in the brain cortices of ovariectomized rats. This regulation is associated with the neuroprotective effects of estradiol.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estradiol/farmacologia , Canais KATP/biossíntese , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Feminino , Canais KATP/agonistas , Fármacos Neuroprotetores/uso terapêutico , Ovariectomia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA