Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Immunol ; 212(3): 410-420, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088802

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a persistent and irreversible side effect of antineoplastic agents. Patients with CIPN usually show chronic pain and sensory deficits with glove-and-stocking distribution. However, whether spinal neuronal microRNA (miR)-124 is involved in cisplatin-induced peripheral neuropathy remains to be studied. In this study, miR-124 was significantly reduced in the spinal dorsal horn in CIPN mice. Overexpression of neuronal miR-124 induced by injecting adeno-associated virus with neuron-specific promoter into the spinal cord of mice prevented the development of mechanical allodynia, sensory deficits, and the loss of intraepidermal nerve fibers induced by cisplatin. Meanwhile, cisplatin-induced M1 microglia activation and the release of proinflammatory cytokines were significantly inhibited by overexpression of neuronal miR-124. Furthermore, electroacupuncture (EA) treatment upregulated miR-124 expression in the spinal dorsal horn of CIPN mice. Interestingly, downregulation of spinal neuronal miR-124 significantly inhibited the regulatory effect of EA on CIPN and microglia activity as well as spinal neuroinflammation induced by cisplatin. These results demonstrate that spinal neuronal miR-124 is involved in the prevention and treatment of EA on cisplatin-induced peripheral neuropathy in mice. Our findings suggest that spinal neuronal miR-124 might be a potential target for EA effect, and we provide, to our knowledge, a new experimental basis for EA prevention of CIPN.


Assuntos
Antineoplásicos , Eletroacupuntura , MicroRNAs , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Microglia , Paclitaxel/efeitos adversos , Antineoplásicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/prevenção & controle , Neurônios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Phytomedicine ; 119: 154969, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37516088

RESUMO

BACKGROUND AND PURPOSE: Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS: Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS: Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS: GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.


Assuntos
Antipruriginosos , Qualidade de Vida , Camundongos , Animais , Antipruriginosos/efeitos adversos , Peptídeo Liberador de Gastrina/metabolismo , Peptídeo Liberador de Gastrina/farmacologia , Bicuculina/efeitos adversos , Bicuculina/metabolismo , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Medula Espinal , Cloroquina/farmacologia , Ácido gama-Aminobutírico/metabolismo
3.
Zhen Ci Yan Jiu ; 48(1): 3-13, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36734490

RESUMO

For more than half a century,the modern bioresearch in acupuncture has made remarkable advancements, proving scientific basis underlying the traditional, intuitive treatment, as well as leading to some new discoveries with the potential to enhance the effectiveness of acupuncture as we know it. Meanwhile, the clinical researches have started to shift its paradigm from traditional individual observation to modern evidence-based medicine. However, there is little interaction between basic and clinic researches, which are like two separate worlds, not benefiting each other. Also the education and training of acupuncture are still traditional style, little combining with modern studies. To bridging the large gap, we need translational science involving in. In this article, with a critical reviews of the limitations of the traditional methods of acupuncture, the challenges faced by clinic practices and placebo-control studies, and the advantages and disadvantages of basic research, we propose a methodological paradigm of the translational research, Translational Acupuncture Research Spectrum, that meets the current situation of acupuncture researches, hoping to give insights into this field and to promote modern acupuncture to move towards a new stage.


Assuntos
Terapia por Acupuntura , Acupuntura , Pesquisa Translacional Biomédica , Ciência Translacional Biomédica , Acupuntura/educação , Medicina Tradicional Chinesa
4.
Lasers Med Sci ; 37(5): 2343-2352, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35404002

RESUMO

Pain is a common symptom of an illness. For decades, pain treatments such as non-steroidal anti-inflammatory drugs, opioids, and surgical nerve blocking have been widely used, but each method has its limitations. Photobiomodulation is a recently developed method for pain management, with light-emitting diodes (LEDs) being a more recent development used in pain management because of their low cost, low side effects, and high safety. Here, we reviewed the phototherapeutic effects of LEDs on different pain conditions. We also discussed possible physicochemical and neurobiological mechanisms underlying LED therapy, especially its effects on inflammatory pain.


Assuntos
Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Dor/radioterapia , Manejo da Dor , Medição da Dor , Fototerapia/métodos
5.
Phytomedicine ; 98: 153965, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35144136

RESUMO

BACKGROUND: Plant extracts with sedative effects have a long history of clinical use for treating insomnia and epilepsy. Geraniol (GE), a plant-derived acyclic monoterpene, reduces locomotion and prolongs barbiturate-induced anesthesia in rats. However, the mechanisms of GE in sedation remain elusive. PURPOSE: This study aimed to investigate the mechanisms of GE in sedation in mice. METHODS: GE was administered systemically by nebulization and intraperitoneal injection. Open field tests, acute seizure tests, and electroencephalogram (EEG) recordings were performed to examine the sedative effects of GE in mice. The time of loss of the righting reflex and return of the righting reflex were recorded in anesthesia experiments to examine the effect of GE on anesthesia. In vitro c-Fos staining and in vivo fiber photometry recordings were performed to detect the activity change of the paraventricular thalamic nucleus (PVT). Microinjection of GE into PVT and related behavioral tests were performed to confirm that PVT was a critical target for GE. Whole-cell recordings were performed to dissect the effects of GE on PVT neurons via GABAA receptors. Molecular docking was performed to examine the interaction between GE and GABAA receptor subunits. RESULTS: We found that GE reduced locomotion, relieved acute seizures, altered the EEG, and facilitated general anesthesia in mice. Next, we found that GE decreased c-Fos expression and suppressed the calcium activity in PVT. Microinjection of GE into PVT reduced locomotion and facilitated anesthesia. Furthermore, electrophysiology results showed that GE induced dramatic membrane hyperpolarization and suppressed the activity of PVT neurons, mainly by prolonging spontaneous inhibitory postsynaptic currents and inducing tonic inhibitory currents. Molecular docking results indicated that the ß3 subunit might be a potential target for GE. CONCLUSION: By combined using behavioral tests, immunohistochemistry, calcium recording, and electrophysiology, we systematically revealed that GE inhibits PVT and induces sedation in mice. Essential oils have long been considered part of traditional medicine, and they are playing a critical role in aromatherapy. Since GE has a comparatively ideal safety property and multiple delivery methods, GE has great application potential in aromatherapy. Our study also provides a potential candidate for further development of sedatives and anaesthetics.

6.
Zhen Ci Yan Jiu ; 47(1): 1-6, 2022 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-35128863

RESUMO

October 2021, Nature published an original research article entitled A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis, which draws great attention and arouses extensive discussion in the acupuncture field. Based on previous findings, this study demonstrates that the abundant innervation of PROKR2-Cre neurons in deep fascia tissues mediates the anti-inflammatory effect induced by low-intensity electroacupuncture stimulation at "Zusanli"(ST36) or "Shousanli"(LI10) via the "vagal-adrenal axis". This study is one of milestones in the field of acupuncture basic research and represents a great achievement generated by multi-discipline integration of acupuncture and neuro-immunology. It reveals partial contributing factors involved in acupuncture's effect and the relative specificity of the neuroanatomical basis of acupoints in the context of immune modulation. This study is both very informative and instructive for the innovation and clinical translation of future acupuncture research. Acupuncture researchers are recommended to attach great importance to this study in terms of its research strategy,methods and findings.


Assuntos
Terapia por Acupuntura , Acupuntura , Eletroacupuntura , Pontos de Acupuntura , Nervo Vago
7.
Biol Res ; 55(1): 5, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115050

RESUMO

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Assuntos
Eletroacupuntura , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Microglia/fisiologia , Manejo da Dor , Animais , Inflamação/induzido quimicamente , Inflamação/terapia , Camundongos , Neurônios , Dor/induzido quimicamente
8.
Anesth Analg ; 134(1): 204-215, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652301

RESUMO

BACKGROUND: The main symptoms of chemotherapy-induced peripheral neuropathy (CIPN) include pain and numbness. Neuronal G protein-coupled receptor kinase 2 (GRK2) plays an important role in various pain models. Cisplatin treatment can induce the activation of proinflammatory microglia in spinal cord. The purpose of this study was to investigate the role of spinal neuronal GRK2 in cisplatin-induced CIPN and in the prevention of CIPN by electroacupuncture (EA). METHODS: The pain and sensory deficit behaviors of mice were examined by von Frey test and adhesive removal test. The expression of neuronal GRK2 in the spinal cord is regulated by intraspinal injection of adeno-associated virus (AAV) containing neuron-specific promoters. The protein levels of GRK2, triggering receptor expressed on myeloid cells 2 (TREM2), and DNAX-activating protein of 12 kDa (DAP12) in spinal dorsal horn were detected by Western blot, the density of intraepidermal nerve fibers (IENFs) was detected by immunofluorescence, and microglia activation were evaluated by real-time polymerase chain reaction (PCR). RESULTS: In this study, cisplatin treatment led to the decrease of GRK2 expression in the dorsal horn of spinal cord. Overexpression of neuronal GRK2 in spinal cord by intraspinal injection of an AAV vector expressing GRK2 with human synapsin (hSyn) promotor significantly inhibited the loss of IENFs and alleviated the mechanical pain and sensory deficits induced by cisplatin. Real-time PCR analysis showed that the overexpression of neuronal GRK2 significantly inhibited the messenger RNA (mRNA) upregulation of proinflammatory cytokine interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase (iNOS), and M1 microglia marker cluster of differentiation (CD)16 induced by cisplatin. Furthermore, the TREM2 and DAP12, which has been demonstrated to play a role in microglia activation and in the development of CIPN, were also downregulated by overexpression of neuronal GRK2 in this study. Interestingly, preventive treatment with EA completely mimics the effect of overexpression of neuronal GRK2 in the spinal cord in this mouse model of cisplatin-induced CIPN. EA increased GRK2 level in spinal dorsal horn after cisplatin treatment. Intraspinal injection of AAV vector specifically downregulated neuronal GRK2, completely reversed the regulatory effect of EA on CIPN and microglia activation. All these indicated that the neuronal GRK2 mediated microglial activation contributed to the process of CIPN. CONCLUSIONS: Neuronal GRK2 in the spinal cord contributed to the preventive effect of EA on CIPN. The neuronal GRK2 may be a potential target for CIPN intervention.


Assuntos
Cisplatino , Eletroacupuntura , Quinase 2 de Receptor Acoplado a Proteína G/genética , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Medula Espinal/patologia , Animais , Comportamento Animal , Dependovirus , Humanos , Hiperalgesia/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fibras Nervosas , Neuralgia/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Dor , Corno Dorsal da Medula Espinal/metabolismo , Fatores de Tempo
9.
Biol. Res ; 55: 5-5, 2022. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1383910

RESUMO

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and down-regulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Assuntos
Animais , Camundongos , Eletroacupuntura , Microglia/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Manejo da Dor , Dor/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/terapia , Neurônios
10.
Kaohsiung J Med Sci ; 37(12): 1027-1037, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34405943

RESUMO

In recent years, circular RNA (circRNA) has been found to be involved in a variety of cancer processes. More and more attention has been paid to the research of circRNA in lung cancer. This study aims to investigate whether circ_0000517 affected the physiology of non-small cell lung cancer (NSCLC) and the underlying mechanism. The results demonstrated that circ_0000517 was highly expressed in lung cancer tissues and cells, and overexpression of circ_0000517 was negatively correlated with the prognosis of NSCLC patients. Silencing of circ_0000517 significantly inhibited the proliferation, glycolysis, and glutamine decomposition of NSCLC cells in vitro and repressed the growth of xenografted tumors in vivo. Moreover, knockdown of circ_0000517 attenuated the expression of PCNA, HK2, LDHA, ASCT2, and GLS1. Further study found that circ_0000517 targeted miR-330-5p and miR-330-5p targeted YY1. In addition, miR-330-5p inhibitor reversed inhibition of cancer cell proliferation, glycolysis, and glutamine decomposition induced by si-circ_0000517. In conclusion, our study revealed that silencing of circ_0000517 improved the progression of NSCLC through regulating miR-330-5p/YY1 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutamina/metabolismo , Glicólise , Neoplasias Pulmonares/metabolismo , MicroRNAs/fisiologia , RNA Circular/fisiologia , Fator de Transcrição YY1/fisiologia , Adulto , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia , Fator de Transcrição YY1/genética
11.
Neuron ; 108(3): 436-450.e7, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791039

RESUMO

The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY+ noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY+ adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY+ splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.


Assuntos
Eletroacupuntura , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Am J Chin Med ; 48(4): 793-811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420752

RESUMO

Acupuncture reduces pain by activating specific areas called acupoints on the patient's body. When these acupoints are fully activated, sensations of soreness, numbness, fullness, or heaviness called De qi or Te qi are felt by clinicians and patients. There are two kinds of acupuncture, manual acupuncture and electroacupuncture (EA). Compared with non-acupoints, acupoints are easily activated on the basis of their special composition of blood vessels, mast cells, and nerve fibers that mediate the acupuncture signals. In the spinal cord, EA can inhibit glial cell activation by down-regulating the chemokine CX3CL1 and increasing the anti-inflammatory cytokine interleukin-10. This inhibits P38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways, which are associated with microglial activation of the C-Jun N-terminal kinase signaling pathway and subsequent astrocyte activation. The inactivation of spinal microglia and astrocytes mediates the immediate and long-term analgesic effects of EA, respectively. A variety of pain-related substances released by glial cells such as the proinflammatory cytokines tumor necrosis factor [Formula: see text], interleukin-1[Formula: see text], interleukin-6, and prostaglandins such as prostaglandins E2 can also be reduced. The descending pain modulation system in the brain, including the anterior cingulated cortex, the periaqueductal gray, and the rostral ventromedial medulla, plays an important role in EA analgesia. Multiple transmitters and modulators, including endogenous opioids, cholecystokinin octapeptide, 5-hydroxytryptamine, glutamate, noradrenalin, dopamine, [Formula: see text]-aminobutyric acid, acetylcholine, and orexin A, are involved in acupuncture analgesia. Finally, the "Acupuncture [Formula: see text]" strategy is introduced to help clinicians achieve better analgesic effects, and a newly reported acupuncture method called acupoint catgut embedding, which injects sutures made of absorbable materials at acupoints to achieve long-term effects, is discussed.


Assuntos
Analgesia por Acupuntura , Eletroacupuntura , Neurotransmissores/fisiologia , Analgesia por Acupuntura/métodos , Pontos de Acupuntura , Hormônio Adrenocorticotrópico/fisiologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Quimiocina CX3CL1/metabolismo , Citocinas/metabolismo , Dopamina/fisiologia , Ácido Glutâmico/fisiologia , Hemodinâmica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroglia/fisiologia , Norepinefrina/fisiologia , Peptídeos Opioides/fisiologia , Serotonina/fisiologia , Sincalida/fisiologia , Medula Espinal/citologia , Ácido gama-Aminobutírico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Pain ; 20(1): 16.e1-16.e16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102991

RESUMO

Acupoint catgut embedding (ACE) is a widely used traditional Chinese medicine method to manage various diseases, including chronic inflammatory pain. We sought to assess the possible analgesic effects of ACE in comparison with electroacupuncture (EA) and to study the analgesic mechanisms of ACE in a rat model of inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into the hind paw of rats. The von Frey, radiant heat, and gait analysis tests were performed to evaluate the analgesic effects of ACE and EA, and Western blot and immunohistochemistry assays were carried out to determine the molecular mechanisms of ACE. ACE treatments were administered every 4 days or every week with different acupoints (ipsilateral, contralateral, or bilateral ST36 and GB30 acupoints). The most effective ACE strategy for attenuating the nocifensive response induced by CFA injection was performing ACE once a week at ipsilateral ST36 in combination with GB30. EA treatment every other day at ipsilateral ST36 and GB30 showed comparable analgesic effects. ACE inhibited the increased activation of the GluN1 subunit of the N-methyl-d-aspartate receptor and the subsequent Ca2+-dependent signals (CaMKII, ERK, and CREB) that take place in response to CFA. The effects of ACE were similar to intrathecal injection of vilazodone (a serotonin 1A receptor [5-HT1AR] agonist) and were blocked by WAY-100635 (a 5-HT1AR antagonist). In summary, we show that ACE attenuates CFA-induced inflammatory pain in rats by activating spinal 5-HT1AR and by inhibiting the phosphorylation of GluN1, thus, inhibiting the activation of Ca2+-dependent signaling cascades. PERSPECTIVE: This article presents the novel evidence concerning the spinal 5-HT1AR activation-related molecular signaling of ACE analgesia in a rat model of CFA-induced inflammatory pain. This work may help clinicians to verify the effectiveness of ACE analgesia and to better understand the underlying mechanism.


Assuntos
Analgesia por Acupuntura , Pontos de Acupuntura , Categute , Eletroacupuntura , Inflamação/metabolismo , Manejo da Dor , Dor/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Analgesia por Acupuntura/métodos , Animais , Modelos Animais de Doenças , Eletroacupuntura/métodos , Adjuvante de Freund/farmacocinética , Inflamação/induzido quimicamente , Masculino , Dor/induzido quimicamente , Fosforilação , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Cloridrato de Vilazodona/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-30356423

RESUMO

OBJECTIVE: We aimed to investigate the effectiveness of acupoint polyglactin 910 (PGLA) embedding in patients with cervical spondylotic radiculopathy (CSR). METHODS: A total of 102 CSR patients with neck and shoulder pain were recruited and assigned randomly into three groups: the sham acupoint embedding (SAE) group, the middle-layer acupoint PGLA embedding (MAPE) group, and the deep-layer acupoint PGLA embedding (DAPE) group. The primary outcomes were Visual Analog Scale (VAS) scores showing the analgesic effects of treatment. Secondary outcomes included clinical symptoms (evaluated by the Yasuhisa Tanaka 20 (YT-20) score and the neck disability index (NDI)) and patient health status (evaluated by the 36-item short-form survey (SF-36)) as reported in the trial. RESULTS: Compared with the SAE group, VAS scores were significantly reduced at 1, 2, 3, 4, and 10 weeks after the first treatment in both the DAPE and MAPE groups (P < 0.001). Moreover, there were statistically significant increases in the weekly YT-20 scores and significant reductions of the weekly NDI scores compared with baseline values in both the DAPE and MAPE groups (P < 0.001). Compared with baseline values, both the physical component summary (PCS) and the mental component summary scores of the SF-36 at 2, 3, 4, and 10 weeks were significantly higher in the DAPE and MAPE groups (P < 0.001). There were significant lower VAS scores (P < 0.01), higher PCS scores (P < 0.05) at 3 weeks, and lower NDI scores (P < 0.05) at 4 weeks in the DAPE group compared with the MAPE group. CONCLUSIONS: Both DAPE and MAPE showed significant and long-lasting effects on alleviating pain and improving clinical symptoms as well as quality of life in CSR patients with neck and shoulder pain. A more intense effect was seen in the DAPE group compared with the MAPE group.

15.
Artigo em Inglês | MEDLINE | ID: mdl-26649065

RESUMO

Cancer-induced bone pain (CIBP) is a severe type of chronic pain. It is imperative to explore safe and effective analgesic drugs for CIBP treatment. Baicalein (BE), isolated from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi (or Huang Qin), has been demonstrated to have anti-inflammatory and neuroprotective effects. In this study, we examined the effect of BE on CIBP and the mechanism of this effect. Intrathecal and oral administration of BE at different doses could alleviate the mechanical allodynia in CIBP rats. Intrathecal 100 µg BE could inhibit the production of IL-6 and TNF-α in the spinal cord of CIBP rats. Moreover, intrathecal 100 µg BE could effectively inhibit the activation of p-p38 and p-JNK MAPK signals in CIBP rats. The analgesic effect of BE may be associated with the inhibition of the expression of the inflammatory cytokines IL-6 and TNF-α and through the activation of p-p38 and p-JNK MAPK signals in the spinal cord. These findings suggest that BE is a promising novel analgesic agent for CIBP.

16.
Zhen Ci Yan Jiu ; 40(3): 173-9, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26237966

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) on cytotoxic activity of splenic natural killer (NK) cells after surgical trauma via extracellular signal-regulated kinase (ERK) 5 pathway in the rats' hypothalamus, so as to explore its mechanism underlying improving immune disorders after surgery. METHODS: Sprague-Dawley rats were randomly divided into the following 6 groups: control, trauma model, EA, sham EA, 4 nmol-BIX 02188 (an inhibitor for ERK 5 catalytic activity) and 20 nmol-BIX 02188 (n = 6 rats per group). The surgical trauma model was established by making a longitudinal incision (6 cm in length) along the median line of the back to expose the spinal column and another longitudinal incision along the abdominal median line. EA (2 Hz/15 Hz, 1 - 2 mA) was applied to bilateral "Zusanli" (ST 36) for 30 min immediately after surgery. For rats of the BIX groups, intra-lateral ventricular microinjection of BIX 02188 (10 µL, 4 nmol or 20 nmol, or saline for control rats) was conducted 30 min before the surgery. The expression level and protein of phosphorylated ERK 5 (p-ERK 5) and corticotropin-releasing factor (CRF) protein were measured by immunohistochemistry and Western blot, respectively. The cytotoxicity of splenic NK cells and the expression of splenic Perforin and Granzyme-B genes were measured by lactate dehydrogenase (LDH) release assay and real-time PCR, respectively. RESULTS: In comparison with the control group, hypothalamic p-ERK 5 immunoactivity, p-ERK 5 protein and CRF protein expression levels were significantly up-regulated in the model group (P<0. 01, P<0. 05), while splenic NK cell cytotoxicity and Perforin mRNA and Granzyme-B mRNA expression levels were notably down-regulated in the model group (P <0. 05, P < 0. 01). Following EA and administration of ERK 5 antagonist, the increased expression levels of p-ERK 5 immunoactivity in the EA group, and p-ERK 5 and CRF proteins in both EA and 20 nmol-BIX 02188 groups were obviously down-regulated (P<0. 05, P<0. 01), without changes in the sham EA and 4 nmol-BIX 02188 groups (P>0. 05) except the increased p-ERK 5 protein in the 4 nmol-BIX 02188 group. In addition, the down-regulated NK cell activity, Perforin mRNA and Granzyme-B mRNA expression levels were significantly reversed in the EA and 20 nmol-BIX 02188 groups (P<0. 05, P<0. 01). No significant differences were found between the EA group and 20 nmol-BIX 02188 group in down-regulating hypothalamic p-ERK 5 and CRF protein expression and up-regulating splenic NK cytotoxicity and Perforin and Granzyme-B gene expression (P>0. 05). CONCLUSION: EA can promote the cytotoxicity of splenic NK cells in surgical trauma rats, which may be closely associated with its functions in down-regulating trauma-induced activation of ERK 5 pathway and production of CRF in the hypothalamus.


Assuntos
Eletroacupuntura , Hipotálamo/enzimologia , Células Matadoras Naturais/imunologia , Proteína Quinase 7 Ativada por Mitógeno/imunologia , Baço/citologia , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/terapia , Pontos de Acupuntura , Animais , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Hipotálamo/imunologia , Masculino , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Baço/imunologia , Ferimentos e Lesões/cirurgia
17.
Artigo em Inglês | MEDLINE | ID: mdl-26064176

RESUMO

Acupuncture or electroacupuncture (EA) has been demonstrated to have a powerful antihypernociceptive effect on inflammatory pain. The attenuation of G protein-coupled receptor kinase 2 (GRK2) in spinal cord and peripheral nociceptor has been widely acknowledged to promote the transition from acute to chronic pain and to facilitate the nociceptive progress. This study was designed to investigate the possible role of spinal GRK2 in EA antiallodynic in a rat model with complete Freund's adjuvant (CFA) induced inflammatory pain. EA was applied to ST36 ("Zusanli") and BL60 ("Kunlun") one day after CFA injection. Single EA treatment at day 1 after CFA injection remarkably alleviated CFA induced mechanical allodynia two hours after EA. Repeated EA displayed significant antiallodynic effect from 2nd EA treatment and a persistent effect was observed during the rest of treatments. However, downregulation of spinal GRK2 by intrathecal exposure of GRK2 antisense 30 mins after EA treatment completely eliminated both the transient and persistent antiallodynic effect by EA treatment. These pieces of data demonstrated that the spinal GRK2 played an important role in EA antiallodynia on inflammatory pain.

18.
Artigo em Inglês | MEDLINE | ID: mdl-24795763

RESUMO

Growing evidence indicates that chronic neuropathic pain is frequently accompanied by an array of psychiatric diseases, such as depression and anxiety. Electroacupuncture (EA), as one therapy of traditional Chinese medicine, has displayed potent antidepressant-like effects in numerous clinical studies. The present study was designed to examine the possible effects of EA on the depressive and anxiety disorders induced by neuropathic pain. A classic rat model of neuropathic pain was produced by chronic constriction injury (CCI) of the sciatic nerve. EA was performed on acupoints "Bai-Hui" (GV20) and unilateral "Yang-Ling-Quan" (GB34). The antidepressive and anxiolytic effects of EA treatment were analyzed using the forced swimming test (FST) and the elevated plus maze (EPM) test, respectively. CCI resulted in remarkable depression- and anxiety-like behaviors, whereas the chronic EA treatment significantly improved the behavioral deficits of CCI rats. Moreover, the phosphorylation level of the NMDA receptor type 1 (NR1) subunit was decreased in the hippocampus of CCI rats. Intriguingly, continuous EA treatment effectively blocked this decrease in the levels of pNR1. These results suggested that EA has antidepressive and anxiolytic effects on rats with neuropathic pain and that this might be associated with restoring the phosphorylation of NR1 in the hippocampus.

19.
BMC Complement Altern Med ; 12: 225, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173601

RESUMO

BACKGROUND: Orexin A (OXA, hypocretin/hcrt 1) is a newly discovered potential analgesic substance. However, whether OXA is involved in acupuncture analgesia remains unknown. The present study was designed to investigate the involvement of spinal OXA in electroacupuncture (EA) analgesia. METHODS: A modified rat model of post-laparotomy pain was adopted and evaluated. Von Frey filaments were used to measure mechanical allodynia of the hind paw and abdomen. EA at 2/15 Hz or 2/100 Hz was performed once on the bilateral ST36 and SP6 for 30 min perioperatively. SB-334867, a selective orexin 1 receptor (OX1R) antagonist with a higher affinity for OXA than OXB, was intrathecally injected to observe its effect on EA analgesia. RESULTS: OXA at 0.3 nmol and EA at 2/15 Hz produced respective analgesic effects on the model (P<0.05). Pre-surgical intrathecal administered of SB-334867 30 nmol antagonized OXA analgesia and attenuated the analgesic effect of EA (P<0.05). However, SB-334867 did not block fentanyl-induced analgesia (P>0.05). In addition, naloxone, a selective opioid receptor antagonist, failed to antagonize OXA-induced analgesia (P>0.05). CONCLUSIONS: The results of the present study indicate the involvement of OXA in EA analgesia via OX1R in an opioid-independent way.


Assuntos
Analgesia/métodos , Eletroacupuntura/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Dor/metabolismo , Complicações Pós-Operatórias/terapia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Coluna Vertebral/metabolismo , Abdome , Pontos de Acupuntura , Animais , Fentanila/farmacologia , Membro Posterior , Hiperalgesia/metabolismo , Hiperalgesia/terapia , Laparotomia , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores de Orexina , Orexinas , Manejo da Dor/métodos , Complicações Pós-Operatórias/metabolismo , Ratos , Ratos Sprague-Dawley
20.
J Pain ; 12(9): 974-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21680256

RESUMO

UNLABELLED: Although electroacupuncture (EA) has been proven to effectively relieve pain associated with arthritis, the underlying mechanism of EA analgesia requires further investigation. Here, the involvement of spinal neurotrophin-3 (NT-3) in EA's analgesic effects on complete Freund's adjuvant (CFA)-induced inflammatory pain was examined. The present study demonstrated that: 1) repeated EA stimulation of ipsilateral GB30 and GB34 acupoints remarkably suppressed CFA-induced hyperalgesia; 2) EA treatment markedly enhanced the upregulation of spinal NT-3 mRNA and protein levels following CFA injection; 3) antisense oligodeoxynucleotides (ODN) specifically against NT-3 intrathecally administered during EA treatment for 7 days significantly attenuated the EA analgesia; and 4) the suppressed expression of spinal GFAP (astrocytic marker), OX-42 (microglial marker) as well as proinflammatory cytokines, interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α by EA treatment was significantly attenuated following NT-3 antisense ODN delivery. These results suggested that endogenous NT-3 may be involved in the analgesic effect of EA on inflammatory pain in rats, mediated through the inhibition of spinal glial activity as well as proinflammatory cytokine production. PERSPECTIVE: The present study may initiate a discussion on the possible roles of NT-3/glia/cytokines in the therapeutic effects of acupuncture and provide insight on the mechanism underlie the analgesic effects of acupuncture on pain associated with arthritis.


Assuntos
Artrite/metabolismo , Modelos Animais de Doenças , Eletroacupuntura , Inibição Neural/fisiologia , Neuroglia/metabolismo , Neurotrofina 3/fisiologia , Medula Espinal/metabolismo , Analgesia/métodos , Animais , Artrite/terapia , Eletroacupuntura/métodos , Mediadores da Inflamação/fisiologia , Masculino , Inibição Neural/genética , Neuroglia/fisiologia , Neurotrofina 3/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA