Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118205, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641079

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng is a valuable herb in traditional Chinese medicine. Modern research has shown that it has various benefits, including tonifying vital energy, nourishing and strengthening the body, calming the mind, improving cognitive function, regulating fluids, and returning blood pressure, etc. Rg1 is a primary active component of ginseng. It protects hippocampal neurons, improves synaptic plasticity, enhances cognitive function, and boosts immunity. Furthermore, it exhibits anti-aging and anti-fatigue properties and holds great potential for preventing and managing neurodegenerative diseases (NDDs). AIM OF THE STUDY: The objective of this study was to examine the role of Rg1 in treating chronic inflammatory NDDs and its molecular mechanisms. MATERIALS AND METHODS: In vivo, we investigated the protective effects of Rg1 against chronic neuroinflammation and cognitive deficits in mice induced by 200 µg/kg lipopolysaccharide (LPS) for 21 days using behavioral tests, pathological sections, Western blot, qPCR and immunostaining. In vitro experiments involved the stimulation of HT22 cells with 10 µg/ml of LPS, verification of the therapeutic effect of Rg1, and elucidation of its potential mechanism of action using H2DCFDA staining, BODIPY™ 581/591 C11, JC-1 staining, Western blot, and immunostaining. RESULTS: Firstly, it was found that Rg1 significantly improved chronic LPS-induced behavioral and cognitive dysfunction in mice. Further studies showed that Rg1 significantly attenuated LPS-induced neuronal damage by reducing levels of IL-6, IL-1ß and ROS, and inhibiting AIM2 inflammasome. Furthermore, chronic LPS exposure induced the onset of neuronal ferroptosis by increasing the lipid peroxidation product MDA and regulating the ferroptosis-associated proteins Gpx4, xCT, FSP1, DMT1 and TfR, which were reversed by Rg1 treatment. Additionally, Rg1 was found to activate Nrf2 and its downstream antioxidant enzymes, such as HO1 and NQO1, both in vivo and in vitro. In vitro studies also showed that the Nrf2 inhibitor ML385 could inhibit the anti-inflammatory, antioxidant, and anti-ferroptosis effects of Rg1. CONCLUSIONS: This study demonstrated that Rg1 administration ameliorated chronic LPS-induced cognitive deficits and neuronal ferroptosis in mice by inhibiting neuroinflammation and oxidative stress. The underlying mechanisms may be related to the inhibition of AIM2 inflammasome and activation of Nrf2 signaling. These findings provide valuable insights into the treatment of chronic neuroinflammation and associated NDDs.


Assuntos
Disfunção Cognitiva , Ferroptose , Ginsenosídeos , Fator 2 Relacionado a NF-E2 , Neurônios , Transdução de Sinais , Animais , Ginsenosídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Ferroptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Linhagem Celular , Anti-Inflamatórios/farmacologia , Proteínas de Ligação a DNA
2.
World J Diabetes ; 15(3): 530-551, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591077

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM: To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS: A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION: NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.

3.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539816

RESUMO

Cytokine storm and ROS overproduction in the lung always lead to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in a very short time. Effectively controlling cytokine storm release syndrome (CRS) and scavenging ROS are key to the prevention and treatment of ALI/ARDS. In this work, the naringin nanoparticles (Nar-NPs) were prepared by the emulsification and evaporation method; then, the mesenchymal stem cell membranes (CMs) were extracted and coated onto the surface of the Nar-NPs through the hand extrusion method to obtain the biomimetic CM@Nar-NPs. In vitro, the CM@Nar-NPs showed good dispersity, excellent biocompatibility, and biosafety. At the cellular level, the CM@Nar-NPs had excellent abilities to target inflamed macrophages and the capacity to scavenge ROS. In vivo imaging demonstrated that the CM@Nar-NPs could target and accumulate in the inflammatory lungs. In an ALI mouse model, intratracheal (i.t.) instillation of the CM@Nar-NPs significantly decreased the ROS level, inhibited the proinflammatory cytokines, and remarkably promoted the survival rate. Additionally, the CM@Nar-NPs increased the expression of M2 marker (CD206), and decreased the expression of M1 marker (F4/80) in septic mice, suggesting that the Nar-modulated macrophages polarized towards the M2 subtype. Collectively, this work proves that a mesenchymal stem cell membrane-based biomimetic nanoparticle delivery system could efficiently target lung inflammation via i.t. administration; the released payload inhibited the production of inflammatory cytokines and ROS, and the Nar-modulated macrophages polarized towards the M2 phenotype which might contribute to their anti-inflammation effects. This nano-system provides an excellent pneumonia-treated platform with satisfactory biosafety and has great potential to effectively deliver herbal medicine.

4.
Food Microbiol ; 120: 104449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431336

RESUMO

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Assuntos
Burkholderia gladioli , Oryza , Ácido Bongcréquico/análise , Óleo de Soja/análise , Amido , Contaminação de Alimentos/análise , Farinha/análise
5.
Int J Mol Med ; 53(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391009

RESUMO

Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Vasos Linfáticos , Humanos , Linfangiogênese/fisiologia , Doenças Cardiovasculares/metabolismo , Vasos Linfáticos/metabolismo , Cardiopatias/metabolismo , Coração
6.
Pharmacol Biochem Behav ; 237: 173726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360104

RESUMO

BACKGROUND: Some studies have highlighted the crucial role of aversion in addiction treatment. The pathway from the anterior paraventricular thalamus (PVT) to the shell of the nucleus accumbens (NAc) has been reported as an essential regulatory pathway for processing aversion and is also closely associated with substance addiction. However, its impact on alcohol addiction has been relatively underexplored. Therefore, this study focused on the role of the PVT-NAc pathway in the formation and relapse of alcohol addiction-like behaviour, offering a new perspective on the mechanisms of alcohol addiction. RESULTS: The chemogenetic inhibition of the PVT-NAc pathway in male mice resulted in a notable decrease in the establishment of ethanol-induced conditioned place aversion (CPA), and NAc-projecting PVT neurons were recruited due to aversive effects. Conversely, activation of the PVT-NAc pathway considerably impeded the formation of ethanol-induced conditioned place preference (CPP). Furthermore, during the memory reconsolidation phase, activation of this pathway effectively disrupted the animals' preference for alcohol-associated contexts. Whether it was administered urgently 24 h later or after a long-term withdrawal of 10 days, a low dose of alcohol could still not induce the reinstatement of ethanol-induced CPP. CONCLUSIONS: Our results demonstrated PVT-NAc circuit processing aversion, which may be one of the neurobiological mechanisms underlying aversive counterconditioning, and highlighted potential targets for inhibiting the development of alcohol addiction-like behaviour and relapse after long-term withdrawal.


Assuntos
Alcoolismo , Núcleo Accumbens , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Alcoolismo/metabolismo , Tálamo , Etanol/farmacologia , Etanol/metabolismo , Recidiva
7.
Bioresour Technol ; 395: 130385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281549

RESUMO

A two-sludge anaerobic/anoxic/oxic + nitrification system with simultaneous nitrogen and phosphorus removal was studied for enhanced low-strength wastewater treatment. After 158 days of operation, excellent NH4+-N, chemical oxygen demand (COD) and PO43--P removal (99.0 %, 90.0 % and 92.0 %, respectively) were attained under a low carbon/nitrogen ratio of 5, resulting in effluent NH4+-N, COD and PO43--P concentrations of 0.3, 30.0 and 0.5 mg/L, respectively. The results demonstrate that the anaerobic/anoxic/oxic sequencing batch reactor (A2-SBR) and nitrification sequencing batch reactor (N-SBR) had favorable denitrifying phosphorus removal and nitrification performance, respectively. High-throughput sequencing results indicate that the phosphate-accumulating organisms Dechloromonas (1.1 %) and Tetrasphaera (1.2 %) were enriched in the A2-SBR, while the ammonia-oxidizing bacteria Nitrosomonas (7.8 %) and the nitrite-oxidizing bacteria Nitrospira (18.1 %) showed excellent accumulation in the N-SBR. Further analysis via functional prediction revealed that denitrification is the primary pathway of nitrogen metabolism throughout the system. Overall, the system achieved low carbon and high efficiency nutrient removal.


Assuntos
Nitrificação , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Anaerobiose , Fósforo/metabolismo , Carbono/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Nutrientes , Bactérias/metabolismo , Nitrogênio/metabolismo
8.
Cell Biosci ; 14(1): 14, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273376

RESUMO

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by progressive biliary inflammation and bile duct injury. Berberine (BBR) is a bioactive isoquinoline alkaloid found in various herbs and has multiple beneficial effects on metabolic and inflammatory diseases, including liver diseases. This study aimed to examine the therapeutic effect of BBR on cholestatic liver injury in a PSC mouse model (Mdr2-/- mice) and elucidate the underlying mechanisms. METHODS: Mdr2-/-mice (12-14 weeks old, both sexes) received either BBR (50 mg/kg) or control solution daily for eight weeks via oral gavage. Histological and serum biochemical analyses were used to assess fibrotic liver injury severity. Total RNAseq and pathway analyses were used to identify the potential signaling pathways modulated by BBR in the liver. The expression levels of key genes involved in regulating hepatic fibrosis, bile duct proliferation, inflammation, and bile acid metabolism were validated by qRT-PCR or Western blot analysis. The bile acid composition and levels in the serum, liver, small intestine, and feces and tissue distribution of BBR were measured by LC-MS/MS. Intestinal inflammation and injury were assessed by gene expression profiling and histological analysis. The impact on the gut microbiome was assessed using 16S rRNA gene sequencing. RESULTS: BBR treatment significantly ameliorated cholestatic liver injury, evidenced by decreased serum levels of AST, ALT, and ALP, and reduced bile duct proliferation and hepatic fibrosis, as shown by H&E, Picro-Sirius Red, and CK19 IHC staining. RNAseq and qRT-PCR analyses indicated a substantial inhibition of fibrotic and inflammatory gene expression. BBR also mitigated ER stress by downregulating Chop, Atf4 and Xbp-1 expression. In addition, BBR modulated bile acid metabolism by altering key gene expressions in the liver and small intestine, resulting in restored bile acid homeostasis characterized by reduced total bile acids in serum, liver, and small intestine and increased fecal excretion. Furthermore, BBR significantly improved intestinal barrier function and reduced bacterial translocation by modulating the gut microbiota. CONCLUSION: BBR effectively attenuates cholestatic liver injury, suggesting its potential as a therapeutic agent for PSC and other cholestatic liver diseases.

9.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5583-5591, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114151

RESUMO

This study investigated the effect of Suanzaoren Decoction on the expression of N-methyl-D-aspartate receptors(NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors(AMPAR) in the hippocampus and synaptic plasticity in rats with conditioned fear-induced anxiety. The effect of Suanzaoren Decoction on rat behaviors were evaluated through open field experiment, elevated plus maze experiment, and light/dark box experiment. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of glutamate(Glu) and γ-aminobutyric acid(GABA) in the rat hippocampus. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to assess the gene and protein expression of ionotropic glutamate receptors in the hippocampal region. Transmission electron microscopy was utilized to observe the changes in the ultrastructure of synaptic neurons in the hippocampal region. Long-term potentiation(LTP) detection technique was employed to record the changes in population spike(PS) amplitude in the hippocampal region of mice in each group. The behavioral results showed that compared with the model group, the Suanzaoren Decoction group effectively increased the number of entries into open arms, time spent in open arms, percentage of time spent in open arms out of total movement time, number of entries into open arms out of total entries into both arms(P<0.01), and significantly increased the time spent in the light box and the number of shuttle crossings(P<0.01). There was an increasing trend in the number of grid crossings, entries into the center grid, and time spent in the center grid, indicating a significant anxiolytic effect. ELISA results showed that compared with the model group, the Suanzaoren Decoction group exhibited significantly reduced levels of Glu, Glu/GABA ratio(P<0.01), and significantly increased levels of GABA(P<0.01) in the rat hippocampus. Furthermore, Suanzaoren Decoction significantly decreased the gene and protein expression of NMDAR(GluN2B and GluN2A) and AMPAR(GluA1 and GluA2) compared with the model group. Transmission electron microscopy results demonstrated improvements in synapses, neuronal cells, and organelles in the hippocampal region of the Suanzaoren Decoction group compared with the model group. LTP detection results showed a significant increase in the PS amplitude changes in the hippocampal region of Suanzaoren Decoction group from 5 to 35 min compared with the model group(P<0.05, P<0.01). In conclusion, Suanzaoren Decoction exhibits significant anxiolytic effects, which may be attributed to the reduction in NMDAR and AMPAR expression levels and the improvement of synaptic plasticity.


Assuntos
Hipocampo , Receptores Ionotrópicos de Glutamato , Ratos , Camundongos , Animais , Receptores Ionotrópicos de Glutamato/metabolismo , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/genética , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ácido gama-Aminobutírico
10.
Biomed Pharmacother ; 167: 115507, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722192

RESUMO

Phenylethanoid glycosides derived from Cistanche deserticola (PhGs) are plant-derived natural medicinal compounds that occur in many medicinal plants. This study aims to investigate whether PhGs treatment improves the stroke and its potential mechanisms. Adult male C57BL/6 J mice were administrated PhGs once daily for 7 days after MCAO surgery. The neurological score, and catwalk were evaluated on Day 1, 3 and 7 after ischemic stroke. Furthermore, triphenyl-2,3,5-tetrazoliumchloride (TTC) and hematoxylin-eosin (H&E) staining were used for evaluating the infarct volume and neuronal restoration. The effects of PhGs on NSCs proliferation were investigated in vitro and in vivo. Western blot was used to detect the proteins of Wnt/ß-catenin signaling pathway. This study found that PhGs effectively improved the neurological functions in ischemic stroke mice. TTC and H&E staining demonstrated that PhGs not only reduced infarct volume, but also improved neuronal restoration. The immunohistochemistry and 5-Ethynyl-2-deoxyuridine (EdU) incorporation assays revealed that PhGs promoted the proliferation of neural stem cells (NSCs) in subventricular zone (SVZ). In addition, transcriptome analysis of NSCs showed that the Wnt/ß-catenin signaling pathway was involved in the PhGs induced NSCs proliferation. Importantly, the related proteins in the Wnt/ß-catenin signaling pathway were changed after PhGs treatment, including ß-catenin, Wnt3a, GSK-3ß, c-Myc. PhGs treatment improved the stroke through enhancing endogenous NSCs proliferation via activating Wnt/ß-catenin signaling pathway. Due to its effect on the proliferation of NSCs, PhGs are a potential adjuvant therapeutic drug for post-stroke treatment.

11.
Healthcare (Basel) ; 11(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444692

RESUMO

Enhancing health literacy is of the utmost importance to enhance the physical and mental well-being of college students. Unfortunately, there has been limited research investigating the means of improving college students' health literacy through the perspective of families. Family health is an interdisciplinary and complex concept that involves multiple factors, and it provides a holistic perspective on the overall well-being of the family unit. Thus, this study aims to examine the relationship between family health and health literacy and scrutinize the mediating role of psychological resilience. A valid sample of 5473 students was collected from a university in November-December 2022 and was assessed using regression analysis. The findings reveal that family health has a positive association with the health literacy of college students (ß = 0.56, p < 0.001), with psychological resilience playing a critical mediating role (ß = 0.11, 95% CI: [0.09, 0.13]). Therefore, the family ought to be recognized as a fundamental mechanism to enhance college students' health literacy. Additionally, it is essential to emphasize the amelioration of psychological distress among college students and enhance their psychological resilience, which will be helpful for their overall health consciousness and proficiency.

12.
Front Endocrinol (Lausanne) ; 14: 1149751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936157

RESUMO

Obesity, a chronic metabolic disease with a complex pathophysiology, is caused by several variables. High-fat diets lead to the disruption of the gut microbiota and impaired gut barrier function in obese people. The dysbiosis and its metabolites through the intestinal barrier lead to an imbalance in energy metabolism and inflammatory response, which eventually contributes to the development of chronic diseases such as diabetes, hypertension, and cardiovascular disease. Current medicines are therapeutic to obesity in the short term; however, they may bring significant physical and emotional problems to patients as major side effects. Therefore, it is urgent to explore new therapeutic methods that have definite efficacy, can be taken for a long time, and have mild adverse effects. Numerous studies have demonstrated that traditional Chinese medicine (TCM) can control the gut microbiota in a multi-targeted and comprehensive manner, thereby restoring flora homeostasis, repairing damaged intestinal mucosal barriers, and eventually curbing the development of obesity. The active ingredients and compounds of TCM can restore the normal physiological function of the intestinal mucosal barrier by regulating gut microbiota to regulate energy metabolism, inhibit fat accumulation, affect food appetite, and reduce intestinal mucosal inflammatory response, thereby effectively promoting weight loss and providing new strategies for obesity prevention and treatment. Although there are some studies on the regulation of gut microbiota by TCM to prevent and treat obesity, all of them have the disadvantage of being systematic and comprehensive. Therefore, this work comprehensively describes the molecular mechanism of obesity mediated by gut microbiota based on the research state of obesity, gut microbiota, and TCM. A comprehensive and systematic summary of TCM targeting the regulation of gut microbiota for the treatment of obesity should be conducted in order to provide new strategies and ideas for the treatment of obesity.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Obesidade/tratamento farmacológico , Redução de Peso
13.
Physiol Behav ; 265: 114178, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001841

RESUMO

AIMS: Menopausal transition is the transitional period before menopause in women, often accompanied by abnormal fluctuations in hormone levels that increase the risk of aging-related diseases. 4-vinylcyclohexene dioxide (VCD) is a chemical agent that induces gradual depletion of ovarian follicles, which can mimic the natural human process of transition from menopausal transition to post-menopause. Previous studies have shown that the onset of menopausal transition or menopause in VCD-injected mice is associated with a specific strain, even in inbred animals. Institute of Cancer Research (ICR) mice constitute general purpose outbred population, which has not been well-characterized in the VCD-induced model. Thus, the current study aimed to explore the characteristic features, including sleep, mood, and metabolism, of the model by examining the effect of timing of VCD injection in ICR mice to extend the applications of this model. MATERIALS AND METHODS: ICR mice were randomly divided into six groups: 20d VCD and 20d Control, 35d VCD and 35d Control, 52d VCD and 52d Control. VCD mice were intraperitoneally injected with VCD (160 mg/kg), while Control mice were injected intraperitoneally with sesame oil for 4 consecutive weeks, five times a week daily. A vaginal smear was used to observe the estrous cycle of the mice. On the 20th, 35th, and 52nd day after VCD or sesame oil injection, the ovarian morphology, the number of atretic cells, hormone levels, anxiety, depression-like behaviors, sleep phase, and energy metabolism were observed. KEY FINDINGS: The menopausal transition model was successfully replicated by injecting VCD into ICR mice. On the specific days after VCD treatment, the number of atretic follicles increased, the level of E2 decreased and FSH increased, the depressive- and anxiety-like behavior increased, the time of REM and NREM sleep time decreased, and energy metabolism was reduced. SIGNIFICANCE: These results suggested that the ICR mice model has human-like characteristics during the menopause transition. Moreover, the ICR model has a long menopausal transition duration.


Assuntos
Neoplasias , Óleo de Gergelim , Camundongos , Feminino , Animais , Humanos , Camundongos Endogâmicos ICR , Óleo de Gergelim/farmacologia , Menopausa , Hormônios/farmacologia , Sono
14.
Heliyon ; 9(1): e12819, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36647359

RESUMO

As a new natural antioxidant with high safety and non-toxic side effects, polysaccharide can also be used as a critical macromolecular carrier to form a stable iron complex with Fe3+. Our previous study has extracted and purified the homogeneous polysaccharide (PCP1C) from Poria cocos. In this study, the PCP1C-iron (III) complex was synthesized by co-thermal synthesis with PCP1C and ferric trichloride. The chelating capacity, iron releasing capacity, and qualitative identification of complex were evaluated. The complex was characterized by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analysis, particle size distribution, and fourier transform infrared (FTIR) spectroscopy. The antioxidant and iron supplement effects of the complex were also studied in vitro and in the iron deficiency anemia (IDA) rat model. The results showed that the iron content in the PCP1C-iron (III) complex was 28.14% with no free iron, and the iron release rate was 95.3%. The structure analysis showed that the iron core of the PCP1C-iron (III) complex existed in the form of ß-FeOOH and the surface of the complex become smooth and particle size increased, which indicated the high iron content of polysaccharide iron and slow release. Furthermore, we found that the PCP1C iron (III) complex had positive scavenging effect on DPPH, ABTS, MDA, and hydroxyl radical in vitro study and significantly increased the levels of red blood cell (RBC), Hemoglobin (Hb), and red blood cell specific volume (HCT) in IDA rat model. Therefore, our results suggested that the PCP1C-iron (III) complex is expected to develop into a new comprehensive iron supplement and antioxidant.

15.
Altern Ther Health Med ; 29(2): 58-63, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36239568

RESUMO

Objective: We aimed to explore the mechanism of microRNA-936 (miR-936) targeting G protein coupled receptor 78 (GPR78) regulating chemoresistance of non-small cell lung cancer (NSCLC) by activating the Galphaq Rho GTPase pathway. Methods: We added cisplatin to DMEM medium of HCC827/cisplatin cells and adjusted the final concentration to 1 µg/mL. Cells were divided into the control group and the miR-936 transfection group. Tissue samples were divided into the normal tissue group and the NSCLC tissue group. The mRNA expression of miR-936 in tissue samples was analyzed via reverse transcription polymerase chain reaction (RT-PCR). Cell migration and invasion were detected by wound healing assay. Cell counting kit 8 (CCK-8) was used to detect the cell viability 1, 2 and 3 days after cisplatin induction. The toxicity of cisplatin was analyzed by flow cytometry. The targeting relationship between miR-936 and GPR78 was detected by luciferase reporter gene assay. The regulation of miR-936 on GPR78/Rho GTPase was analyzed by Western blot. Results: The expression of miR-936 in NSCLC was lower than in normal tissues (P < .05). The number of cell migrations and invasions in the miR-936 transfection group was lower than in the control group (P < .05). The cell viability in the miR-936 transfection group was lower than in the control group on the 1st, 2nd and 3rd day (P < .05). With the increase in cisplatin concentration, the apoptosis rate of cells increased in a dependent manner (P < .05). Compared with GPR78 Mut, overexpression of miR-936 inhibited the luciferase activity of GPR78 WT 3'- UTR (P < .05). The expression of GPR78, RhoA, Rac1 and ABCB1 protein in the miR-936 transfection group was lower than in the control group (P < .05). The expression of GPR78 protein in the inhibitor+miR-936 transfection group was lower than in the inhibitor+control group (P < .05). Conclusion: miR-936 targets GPR78 and improves the sensitivity of NSCLC cells to cisplatin via the Galphaq Rho GTPase pathway.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/farmacologia , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/farmacologia , Proteínas rho de Ligação ao GTP/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Luciferases/metabolismo , Luciferases/farmacologia , Luciferases/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
16.
Environ Technol ; 44(6): 792-803, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35108163

RESUMO

Green iron tea nanoparticles (GT-Fe NPs) were used as persulfate(PS) activators to oxidize rhodamine B (RhB) in this study. Optimized oxidative degradation condition was 0.033 mM Fe, 5 mM PS at pH 3.0 and 298 K with an initial RhB content of 50 mg/L. After 120 min of RhB degradation utilizing GT-Fe NPs activated PS, 99% of RhB reduction was achieved, while 98% RhB reduction with PS activated by citric acid-Fe2+(CA-Fe) with the same amount of Fe2+. This RhB reduction was due to the delayed release of Fe(II) in the GT-Fe NPs. The addition of GT-Fe NPs enhanced the synthesis of OH· and SO4-· while inhibiting the formation of O2-·. A possible RhB degradation pathway was the chromophore destruction and ring-opening processes using GT-Fe NPs/PS, which produced a range of low molecular weight carboxylic acids (oxalic acid, lactic acid, acetic acid, and formic acid). GT-Fe NPs seem to be a promising persulfate activator in comparison to common activators such as CA-Fe.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Ferro/química , Chá , Rodaminas/química , Oxirredução , Poluentes Químicos da Água/química
17.
Front Pharmacol ; 13: 1064653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479204

RESUMO

Cholestasis, characterized by disturbance of bile formation, is a common pathological condition that can induce several serious liver diseases. As a kind of trigger, estrogen-induced cholestasis belongs to drug-induced cholestasis. Paeoniflorin is the most abundant bioactive constituent in Paeonia lactiflora Pall., Paeonia suffruticosa Andr., or Paeonia veitchii Lynch, a widely used herbal medicine for treating hepatic disease over centuries in China. However, the pharmacologic effect and mechanism of paeoniflorin on estrogen-induced cholestasis remain unclear. In this experiment, the pharmacological effect of paeoniflorin on EE-induced cholestasis in rats was evaluated comprehensively for the first time. Ultra-high-performance liquid chromatography coupled with Q-Exactive orbitrap mass spectrometer was used to monitor the variation of bile acid levels and composition. It was demonstrated that paeoniflorin alleviated 17α-ethinylestradiol (EE)-induced cholestasis dose-dependently, characterized by a decrease of serum biochemical indexes, recovery of bile flow, amelioration of hepatic and ileal histopathology, and reduction of oxidative stress. In addition, paeoniflorin intervention restored EE-disrupted bile acid homeostasis in enterohepatic circulation. Further mechanism studies using western blot, quantitative Real-Time PCR, and immunohistochemical showed that paeoniflorin could upregulate hepatic efflux transporters expression but downregulate hepatic uptake transporter expression. Meanwhile, paeoniflorin reduced bile acids synthesis by repressing cholesterol 7α-hydroxylase in hepatocytes. Paeoniflorin affected the above transporters and enzyme via activation of a nuclear receptor, farnesoid X receptor (FXR), which was recognized as a vital regulator for maintaining bile acid homeostasis. In conclusion, paeoniflorin alleviated EE-induced cholestasis and maintained bile acid homeostasis via FXR-mediated regulation of bile acids transporters and synthesis enzyme. The findings indicated that paeoniflorin might exert a potential therapeutic medicine for estrogen-induced cholestasis.

18.
Comput Math Methods Med ; 2022: 5367753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238480

RESUMO

Acute myocardial infarction (AMI) is the most severe form of coronary heart disease caused by ischemia and hypoxia. The study is aimed at investigating the role of neuropeptides and the mechanism of electroacupuncture (EA) in acute myocardial infarction (AMI) treatment. Compared with the normal population, a significant increase in substance P (SP) was observed in the serum of patients with AMI. PGI2 expression was increased in the SP-treated AMI mouse model, and TXA2 expression was decreased. And PI3K pathway-related genes, including Pik3ca, Akt, and Mtor, were upregulated in myocardial tissue of SP-treated AMI patients. Human cardiomyocyte cell lines (HCM) treated with SP increased mRNA and protein expression of PI3K pathway-related genes (Pik3ca, Pik3cb, Akt, and Mtor). Compared to MI control and EA-treated MI rat models, Myd88, MTOR, Akt1, Sp, and Irak1 were differentially expressed, consistent with in vivo and in vitro studies. EA treatment significantly enriched PI3K/AKT signaling pathway genes within MI-associated differentially expressed genes (DEGs) according to Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, it was confirmed by molecular docking analysis that PIK3CA, AKT1, and mTOR form stable dockings with neuropeptide SP. PI3K/AKT pathway activity may be affected directly or indirectly by EA via SP, which corrects the PGI2/TXA2 metabolic imbalance in AMI. MI treatment is now better understood as a result of this finding.


Assuntos
Eletroacupuntura , Infarto do Miocárdio , Animais , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Biologia Computacional , Homeostase , Humanos , Camundongos , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Ratos , Receptores de Epoprostenol/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Substância P/genética , Substância P/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Front Endocrinol (Lausanne) ; 13: 1018557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246879

RESUMO

Background: At present, the incidence of alcoholic fatty liver disease (AFLD) is increasing year by year, and numerous studies have confirmed that liver diseases are closely related to intestinal flora. Seabuckthorn and Astragalus membranaceus, as traditional Chinese medicine (TCM) with the homology of medicine and food, have good liver protection, and their polysaccharides can regulate the intestinal flora. Here, we studied the effects of HRP, APS and the combination of the two polysaccharides on the intestinal flora of AFLD mice, which provided scientific basis for the treatment of AFLD with the two polysaccharides. Materials and methods: Thirty Kunming (KM) mice were randomly divided into the control group (Con), the model group (Mod), the HRP treatment group (HRP), the APS treatment group (APS), and HRP+APS treatment group (HRP+APS), with six mice in each group. The AFLD model was constructed by continuous intragastric administration of 42% vol Niulanshan ethanol solution for 28 days, and the mice in each polysaccharide group were given corresponding drugs. The levels of AST, ALT, TC and TG in serum of mice were measured. 16S rRNA amplicon sequencing technique was used to determine the diversity and richness of intestinal flora, and the relative abundance of intestinal flora at phylum level and genus level of the mice in each group. Results: HRP, APS and HRP+APS could reduce the serum levels of AST, ALT, TC and TG in mice. In addition, HRP, APS and HRP + APS restored the diversity, relative abundance and community structure of intestinal mucosa bacteria in AFLD mice to a certain extent. Specifically, HRP, APS and HRP+APS remarkably decreased the ratio of Firmicutes to Bacteroidetes, and ultimately increased the abundance of beneficial bacteria and reduced the abundance of pathogenic bacteria. Conclusion: HRP, APS, and HRP+APS can improve the intestinal microecology of AFLD model mice, alleviate liver injury, and maintain normal intestinal function in different degrees.


Assuntos
Astrágalo , Fígado Gorduroso Alcoólico , Microbioma Gastrointestinal , Hippophae , Animais , Astrágalo/química , Etanol , Fígado Gorduroso Alcoólico/tratamento farmacológico , Camundongos , Polissacarídeos/farmacologia , RNA Ribossômico 16S
20.
Phytomedicine ; 104: 154298, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35797865

RESUMO

BACKGROUND: A blockage in a blood vessel can cause reduced blood flow to the brain, which eventually leads to the death of surrounding tissue. Several studies have attempted to develop an effective intervention to reverse this process and improve the health status of affected individuals. Due to its indirect effect on cellular functions and metabolism, the hypoxia-inducible factor (HIF-1α) protein has been proposed as a promising transcription factor in the treatment of stroke. PURPOSE: The current study aims to explore the relation between HIF-1 α and thymoquinone (TQ) in the attenuation of ischemic brain damage and the possible mechanism of this relation to reduce cell death. METHODS: For this purpose, dimethyloxallyl glycine (DMOG), 8 mg/kg, Acriflavine (ACF), 1.5 mg/kg, and both combined with TQ (5 mg/kg) were assessed. Male C57 mice were used to establish an ischemic stroke model by using endothelin-1 (ET-1) (400 pmole/µl) intra- cranial injection. The ultrastructure alterations of neuronal soma, axons, and mitochondria after stroke and treatment were well addressed. Besides, the expression levels of VEGF, HIF-1α, Nrf2, and HO-1 were evaluated. Meanwhile, apoptosis and autophagy-related proteins were also investigated. RESULTS: Treatment of ischemic stroke by TQ can activate the HIF-1α pathway and its downstream genes such as VEGF, TrkB, and PI3K, which in turn enhance angiogenesis and neurogenesis. Our study revealed that TQ has the same effect as DMOG to activate HIF-1 α and can improve motor dysfunction after ischemic stroke. Further, we demonstrated that both TQ and DMOG effectively attenuate the organelle's damage following ischemic stroke, which was confirmed by the cryogenic transmission electron microscope. The synergistic effect of TQ and DMOG may lead to a chemo-modulation action in the autophagy process after stroke onset and this result is validated by the western blot and rt-qPCR techniques. CONCLUSION: Our finding revealed the potential role of TQ as a HIF-1 α activator to reduce cell death, modulate autophagy and decrease the infarct volume after ischemic stroke onset. The neuroprotective effect of TQ is achieved by decreasing the inflammation and increasing angiogenesis as well as neurogenesis via induction of the HIF-1α-VEGF/Nrf2-HO-1-TrkB-PI3K pathway.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Benzoquinonas , Encéfalo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA