Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(3): 628-636, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559293

RESUMO

Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.

2.
Chin J Nat Med ; 19(9): 700-705, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34561082

RESUMO

Biotransformation of α-asarone by Alternaria longipes CGMCC 3.2875 yielded two pairs of new neolignans, (+) (7S, 8S, 7'S, 8'R) iso-magnosalicin (1a)/(-) (7R, 8R, 7'R, 8'S) iso-magnosalicin (1b) and (+) (7R, 8R, 7'S, 8'R) magnosalicin (2a)/(-) (7S, 8S, 7'R, 8'S) magnosalicin (2b), and four known metabolites, (±) acoraminol A (3), (±) acoraminol B (4), asaraldehyde (5), and 2, 4, 5-trimethoxybenzoic acid (6). Their structures, including absolute configurations, were determined by extensive analysis of NMR spectra, X-ray crystallography, and quantum chemical ECD calculations. The cytotoxic activity and Aß42 aggregation inhibitory activity of all the compounds were evaluated. Compound 2 displayed significant anti-Aß42 aggregation activity with an inhibitory rate of 60.81% (the positive control EGCG: 69.17%). In addition, the biotransformation pathway of α-asarone by Alternaria longipes CGMCC 3.2875 was proposed.


Assuntos
Alternaria , Lignanas , Derivados de Alilbenzenos , Anisóis , Biotransformação , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA