Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(6)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37372466

RESUMO

BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.


Assuntos
Ácidos Graxos , Cebolas , Cebolas/genética , Ácidos Graxos/metabolismo , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Ceras/metabolismo
2.
Carbohydr Polym ; 296: 119950, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087996

RESUMO

Sulfurized polyacrylonitrile (SPAN) have been regarded as a promising cathode in high-energy-density lithium-sulfur batteries. However, severe safety issues derived from the electrolyte leakage and the uncontrollable lithium dendrite growth have seriously hindered the practical usage of Li-SPAN batteries. To address these issues, an eco-friendly and porous cellulose gel electrolyte (GE) was designed and prepared by UV photopolymerization and phase inversion methods. Also, covalent functional black phosphorous nanosheets (denoted as BP-Li) were fabricated and chosen as superior Li+ conductors in cellulose GE, ensuring the rapid ion transmission and suppressing the growth of lithium dendrites. As expected, the cellulose/BP-Li GE exhibited satisfactory ionic conductivity up to 5.21 × 10-3 S cm-1 with the high lithium ion transference number of 0.72. The Li-SPAN battery assembled with cellulose/BP-Li GE delivered high capacity of 938.8 mAh g-1 after 500 cycles with the capacity retention of 72.8 %. Hence, the cellulose/BP-Li GE displayed its promising usage in Li-SPAN batteries.


Assuntos
Lítio , Fósforo , Resinas Acrílicas , Celulose , Eletrólitos , Íons
3.
PLoS One ; 9(11): e113290, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415343

RESUMO

The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.


Assuntos
Genes de Plantas/genética , Cebolas/genética , Epiderme Vegetal/genética , Folhas de Planta/genética , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Repetições de Microssatélites/genética , Cebolas/classificação , Cebolas/metabolismo , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Especificidade da Espécie , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA