Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(3): 799-816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111215

RESUMO

Phosphorus (P) is a crucial macronutrient for plant growth, development, and reproduction. The effects of low P (LP) stress on leaf senescence and the role of PHR1 in LP-induced leaf senescence are still unknown. Here, we report that PHR1 plays a crucial role in LP-induced leaf senescence, showing delayed leaf senescence in phr1 mutant and accelerated leaf senescence in 35S:PHR1 transgenic Arabidopsis under LP stress. The transcriptional profiles indicate that 763 differentially expressed SAGs (DE-SAGs) were upregulated and 134 DE-SAGs were downregulated by LP stress. Of the 405 DE-SAGs regulated by PHR1, 27 DE-SAGs were involved in P metabolism and transport. PHR1 could bind to the promoters of six DE-SAGs (RNS1, PAP17, SAG113, NPC5, PLDζ2, and Pht1;5), and modulate them in LP-induced senescing leaves. The analysis of RNA content, phospholipase activity, acid phosphatase activity, total P and phosphate content also revealed that PHR1 promotes P liberation from senescing leaves and transport to young tissues under LP stress. Our results indicated that PHR1 is one of the crucial modulators for P recycling and redistribution under LP stress, and the drastic decline of P level is at least one of the causes of early senescence in P-deficient leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
2.
Front Immunol ; 10: 1239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214191

RESUMO

Mannan-binding lectin (MBL) is a vital element in the host innate immune system, which is primarily produced by the liver and secreted into the circulation. Low serum level of MBL is reported to be associated with an increased risk of arthritis. However, the underlying mechanism by which MBL contributes to the pathogenesis of arthritis is poorly understood. In this study, we investigated the precise role of MBL on the course of experimental murine adjuvant-induced arthritis (AIA). MBL-deficient (MBL-/-) AIA mice showed significantly increased inflammatory responses compared with wild-type C57BL/6 AIA mice, including exacerbated cartilage damage, enhanced histopathological features and high level of tartrate-resistant acid phosphatase (TRAP)-positive cells. MBL protein markedly inhibited the osteoclast formation from human blood monocytes induced by receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in vitro. Mechanistic studies established that MBL inhibited osteoclast differentiation via down-regulation of p38 signaling pathway and subsequent nuclear translocation of c-fos as well as activation of nuclear factor of activated T-cells c1 (NFATc1) pathway. Importantly, we have provided the evidence that concentrations of MBL correlated negatively with the serum levels of amino-terminal propeptide of type I procollagen (PINP) and C-terminal telopeptide of type I collagen (ß-CTX), serum markers of bone turnover, in patients with arthritis. Our study revealed an unexpected function of MBL in osteoclastogenesis, thus providing new insight into inflammatory arthritis and other bone-related diseases in patients with MBL deficiency.


Assuntos
Artrite/etiologia , Artrite/metabolismo , Lectina de Ligação a Manose/metabolismo , Osteogênese , Animais , Artrite/diagnóstico por imagem , Artrite/patologia , Biomarcadores , Reabsorção Óssea/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Sistema de Sinalização das MAP Quinases , Lectina de Ligação a Manose/genética , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA