Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 49(6): 1479-1488, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051409

RESUMO

To investigate the effects of glycerol tributyrin (TB) (Triacylglycerol tributanoate) on the regulation of liver lipid metabolism by intestinal flora of grass carp (Ctenopharyngodon idellus). The compound feed with soybean oil 2.8% + fish oil 1.8%, soybean oil 6.3% + fish oil 1.8%, and soybean oil 6.2% + fish oil 1.8% + TB 0.1% was added to the basal diet as a fat source and fed to the basal (control) group, high lipid (HL) group, and tributyrin (TB) group for 12 weeks. We tested the growth performance, fat content, diversity, and abundance of gut flora and other related indexes of grass carp by Soxhlet extraction, liver tissue enzyme activity, oil red O staining, and 16S rRNA high-throughput sequencing. The results showed that the liver fat number and liver fat content of grass carp in the TB group were lower than those in the HL group, while the fattening degree was significantly higher than those in the other two groups; according to the indices such as Shannon, Ace, and Coverage, it was found that the grass carp in the TB group had the highest abundance and diversity of intestinal microflora; at the portal level, Proteobacteria and Fusobacteria were the main dominant flora in the TB group, with the number of unique OUTs accounting for about 59. 9% of the total number measured; at the genus level, the relative abundance of lipase-producing, short-chain fatty acid-associated bacteria, such as Bacillus-Lactobacillus and Bifidobacterium, was significantly lower (p < 0.05). Thus, we conclude that the addition of TB to high-fat diets can alter the structure of the intestinal microbial community and promote hepatic lipid metabolism in grass carp. TB can alleviate fatty liver in grass carp by increasing the relative abundance of short-chain fatty acids in the intestine. Meanwhile, TB inhibits the conversion of primary bile acids to secondary bile acids in the host, which can block intestinal FXR signaling and the hepatic FXR-SHP pathway, thus slowing down fat synthesis and alleviating the accumulation of liver lipids in grass carp.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Glicerol/farmacologia , Glicerol/metabolismo , Metabolismo dos Lipídeos , Carpas/metabolismo , Óleo de Soja , RNA Ribossômico 16S , Dieta/veterinária , Dieta Hiperlipídica , Fígado/metabolismo , Triglicerídeos/metabolismo , Óleos de Peixe/farmacologia , Ácidos e Sais Biliares/metabolismo , Ração Animal/análise
2.
Clin Cancer Res ; 25(10): 3164-3175, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30674502

RESUMO

PURPOSE: The selective MET inhibitor capmatinib is being investigated in multiple clinical trials, both as a single agent and in combination. Here, we describe the preclinical data of capmatinib, which supported the clinical biomarker strategy for rational patient selection. EXPERIMENTAL DESIGN: The selectivity and cellular activity of capmatinib were assessed in large cellular screening panels. Antitumor efficacy was quantified in a large set of cell line- or patient-derived xenograft models, testing single-agent or combination treatment depending on the genomic profile of the respective models. RESULTS: Capmatinib was found to be highly selective for MET over other kinases. It was active against cancer models that are characterized by MET amplification, marked MET overexpression, MET exon 14 skipping mutations, or MET activation via expression of the ligand hepatocyte growth factor (HGF). In cancer models where MET is the dominant oncogenic driver, anticancer activity could be further enhanced by combination treatments, for example, by the addition of apoptosis-inducing BH3 mimetics. The combinations of capmatinib and other kinase inhibitors resulted in enhanced anticancer activity against models where MET activation co-occurred with other oncogenic drivers, for example EGFR activating mutations. CONCLUSIONS: Activity of capmatinib in preclinical models is associated with a small number of plausible genomic features. The low fraction of cancer models that respond to capmatinib as a single agent suggests that the implementation of patient selection strategies based on these biomarkers is critical for clinical development. Capmatinib is also a rational combination partner for other kinase inhibitors to combat MET-driven resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Imidazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Triazinas/farmacologia , Animais , Benzamidas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 13(5): 1117-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24608574

RESUMO

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Tiazóis/farmacologia , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Ratos , Tiazóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA