Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Med ; 22(3): 295-302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599914

RESUMO

OBJECTIVE: The effects of arsenic trioxide (As2O3) on hepatocellular carcinoma have been documented widely. Autophagy plays dual roles in the survival and death of cancer cells. Therefore, we investigated the exact role of autophagy in As2O3-induced apoptosis in liver cancer cells. METHODS: The viability of hepatoma cells was determined using the MTT assay with or without fetal bovine serum. The rate of apoptosis in liver cancer cells treated with As2O3 was evaluated using flow cytometry, Hoechst 33258 staining, and TUNEL assays. The rate of autophagy among liver cancer cells treated with As2O3 was detected using immunofluorescence, Western blot assay and transmission electron microscopy. RESULTS: Upon treatment with As2O3, the viability of HepG2 and SMMC-7721 cells was decreased in a time- and dose-dependent manner. The apoptosis rates of both liver cancer cell lines increased with the concentration of As2O3, as shown by flow cytometry. Apoptosis in liver cancer cells treated with As2O3 was also shown by the activation of the caspase cascade and the regulation of Bcl-2/Bax expression. Furthermore, As2O3 treatment induced autophagy in liver cancer cells; this finding was supported by Western blot, immunofluorescence of LC3-II and beclin 1, and transmission electron microscopy. In liver cancer cells, As2O3 inhibited the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway that plays a vital role in both apoptosis and autophagy. The PI3K activator SC-79 partially reversed As2O3-induced autophagy and apoptosis. Furthermore, inhibiting autophagy with 3-methyladenine partially reversed the negative effects of As2O3 on cell viability. Serum starvation increased autophagy and amplified the effect of As2O3 on cell death. CONCLUSION: As2O3 induces apoptosis and autophagy in liver cancer cells. Autophagy induced by As2O3 may have a proapoptotic effect that helps to reduce the viability of liver cancer cells. This study provides novel insights into the effects of As2O3 against liver cancer. Please cite this article as: Deng ZT, Liang SF, Huang GK, Wang YQ, Tu XY, Zhang YN, Li S, Liu T, Cheng BB. Autophagy plays a pro-apoptotic role in arsenic trioxide-induced cell death of liver cancer. J Integr Med. 2024; 22(3): 295-302.


Assuntos
Antineoplásicos , Apoptose , Trióxido de Arsênio , Arsenicais , Autofagia , Neoplasias Hepáticas , Óxidos , Trióxido de Arsênio/farmacologia , Humanos , Autofagia/efeitos dos fármacos , Arsenicais/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Apoptose/efeitos dos fármacos , Óxidos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Sobrevivência Celular/efeitos dos fármacos
2.
Mol Nutr Food Res ; 63(18): e1801356, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313461

RESUMO

SCOPE: Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder, with increasing incidence worldwide but unknown etiology. 6-Gingerol (6-GIN), a major dietary compound found in ginger rhizome, has immunomodulatory activity. However, its role in autoimmune diseases, as well as the underlying mechanisms, are unclear. In this study, it is evaluated if 6-GIN can effectively ameliorate the clinical disease severity of experimental autoimmune encephalomyelitis, an animal model of MS. METHODS AND RESULTS: Clinical scores of experimental autoimmune encephalomyelitis (EAE) mice are recorded daily. Inflammation of periphery and neuroinflammation of EAE mice are determined by flow cytometry analysis, ELISA, and histopathological analysis, and results show that 6-GIN significantly inhibits inflammatory cell infiltration from the periphery into the central nervous system and reduces neuroinflammation and demyelination. Flow cytometry analysis, ELISA, and quantitative PCR show that 6-GIN could suppress lipolysaccharide-induced dendritic cell (DC) activation and induce the tolerogenic DCs. Immunoblot analysis reveals that the phosphorylation of nuclear factor-κB and mitogen-activated protein kinase, two critical regulators of inflammatory signaling, are significantly inhibited in 6-GIN-treated DCs. CONCLUSION: The results of this study demonstrate that 6-GIN has significant potential as a novel anti-inflammatory agent for the treatment of autoimmune diseases such as MS via direct modulatory effects on DCs.


Assuntos
Catecóis/farmacologia , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Álcoois Graxos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células Th17/citologia , Células Th17/efeitos dos fármacos
3.
Zhongguo Zhong Yao Za Zhi ; 42(17): 3286-3293, 2017 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29192437

RESUMO

As the most important nuclear transcription factors in the cells, NF-κB is involved in many intracellular signaling pathways and transcription and regulation of genetic information. The signal transduction pathways mainly include the activation of IκB kinase, degradation of IκB protein and the nuclear translocation of p65. p65 trans-nuclear binding with DNA is the key for NF-κB to play a role. Abnormal activation of NF-κB is a major factor in the induction of oxidative stress, inflammation, cancer and so on. Therefore, maintaining the balance of NF-κB activity and regulating the nuclear translocation of p65 have great significance for further research on related subjects. In this paper, the regulation effects of the main active substances of medicinal plants (such as polyphenols, saponins, and alkaloids) on p65 nuclear translocation and the upstream pathway of NF-κB were discussed, expecting to provide reference for the development of natural active substances for functional food.


Assuntos
Transporte Ativo do Núcleo Celular , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Fator de Transcrição RelA/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , NF-kappa B , Fosforilação , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA