Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7276, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142764

RESUMO

Irritable bowel syndrome (IBS) and ulcerative colitis (UC) are two intestinal diseases with different pathological changes. Electroacupuncture (EA) at Zusanli (ST36) on both IBS and UC is widely used in clinic practice. But it is unclear whether acupuncture at one acupoint can treat two different intestinal diseases at different layers of intestinal barrier. To address this question, we explored three intestinal barrier lesions in IBS and UC mice with the aid of transcriptome data analysis and studied the efficacy of EA at ST36 on them. The transcriptome data analysis showed that both UC and IBS had disrupted intestinal barrier in various layers. And both UC and IBS had epithelial barrier lesions with reduction of ZO-1, Occludin and Claudin-1, while UC rather than IBS had the destruction of the mucus barrier with less MUC2 expression. As to the vascular barrier, UC showed a higher CD31 level and mesenteric blood flow reduction, while IBS showed a lower PV-1 level. EA at ST36 can significantly improve the above lesions of intestinal barrier of IBS and UC. Our results gave more details about the comprehensive protective effect of EA for UC and IBS. We guess the effect of acupuncture may be a kind of homeostasis regulation.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Síndrome do Intestino Irritável , Camundongos , Animais , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/patologia , Colite Ulcerativa/terapia , Colite Ulcerativa/patologia , Eletroacupuntura/métodos , Intestinos/patologia , Pontos de Acupuntura
2.
Front Pharmacol ; 13: 962223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034878

RESUMO

Background: Aloe vera is a medically valuable plant with anti-epileptic activity; however, its mechanism of action remains unknown. In this study, network pharmacological, in vitro, and in vivo experiments were carried out to explore the potential anti-epileptic components and targets of Aloe vera. Methods: The main active components of Aloe vera were identified by searching the Traditional Chinese Medicine System Pharmacology database. Targets of Aloe vera were predicted using SwissTargetPrediction, whereas information about the epilepsy disease targets was obtained from Gene Cards. The protein-protein interaction network and core targets were screened according to the topological structure and CytoNCA plugin. The glutamate-induced HT22 cell line and pentylenetetrazol-induced seizure rats were used to confirm the effect of aloesone by detecting reactive oxygen species (ROS) and apoptosis, and predicting the targets. Results: A total of 14 core active components were selected based on the screening criteria of oral bioavailability ≥30% and drug-likeness ≥ 0.10. Four compounds, namely linoleic acid, aloesone, isoeleutherol glucosiden qt, and anthranol, demonstrated the potential ability of crossing the blood-brain barrier. A total of 153 targets associated with epilepsy were predicted for the four compounds. Moreover, after network analysis with CytoNCA, 10 targets, namely, MAPK1, SRC, MARK3, EGFR, ESR1, PTGS2, PTPN11, JAK2, PPKCA, and FYN, were selected as the core genes, and SRC, which has been predicted to be the target of aloesone and anthranol, exhibited the highest subgraph centrality value. In vitro experiments confirmed that aloesone treatment significantly inhibited the glutamate-induced neuronal injury by reducing the intracellular ROS content and the early phase of apoptosis. Additionally, treatment with 50 mg/kg aloesone resulted in anti-seizure effects by reducing the seizure score and prolonging the latent period in acute and chronic rats. Furthermore, aloesone treatment increased the phosphorylation of c-SRC at Y418 and reduced the phosphorylation at Y529, simultaneously activating c-SRC. Conclusion: Integrating network pharmacology with in vitro and in vivo experiments demonstrated that aloesone, which inhibited seizure by activating c-SRC, is a potential anti-seizure compound present in Aloe vera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA