Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Low Extrem Wounds ; 23(1): 70-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648167

RESUMO

To analyze and evaluate the clinical efficacy of Chinese and Western medical techniques in the treatment of severe diabetic foot ulcers complicated with necrotizing fasciitis of the lower leg and summarize the treatment experience of such patients to identify a new method of limb salvage treatment. A total of 46 patients with severe diabetic foot ulcers and necrotizing fasciitis of the lower leg were treated with such techniques as surgical debridement, bone drilling, open joint fusion, and microskin implantation. Wounds were treated with moisture-exposed burn therapy (a regenerative medical treatment for burns, wounds, and ulcers) and moisture-exposed burn ointment (a traditional Chinese medicine); underlying diseases were also treated effectively. The wound healing time, rate of high amputation, and mortality of these patients were summarized, and the clinical efficacy of such treatments was evaluated. Of the 46 patients enrolled, 38 patients were cured, with a cure rate of 82.61%. The average wound healing time was 130 ± 74.37 days. Two patients underwent high amputations, with an amputation rate of 4.35%, and 4 deaths occurred, with a mortality rate of 8.70%. The combination of Chinese and Western medical techniques in the treatment of severe diabetic foot ulcers complicated with necrotizing fasciitis of the lower leg not only effectively saved patients' lives and promoted wound healing but also greatly reduced the rates of high amputation and disability.


Assuntos
Diabetes Mellitus , Pé Diabético , Fasciite Necrosante , Humanos , Perna (Membro) , Fasciite Necrosante/complicações , Fasciite Necrosante/diagnóstico , Fasciite Necrosante/cirurgia , Pé Diabético/complicações , Pé Diabético/diagnóstico , Pé Diabético/cirurgia , Extremidade Inferior , Amputação Cirúrgica
2.
J Plant Res ; 132(3): 419-429, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30903398

RESUMO

Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.


Assuntos
Acetatos/metabolismo , Alcaloides/metabolismo , Ciclopentanos/metabolismo , Dendrobium/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Dendrobium/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas , Reguladores de Crescimento de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
3.
Chromosoma ; 126(6): 713-728, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28688040

RESUMO

Allopolyploidy and homoeologous recombination are two important processes in reshaping genomes and generating evolutionary novelties. Newly formed allopolyploids usually display chromosomal perturbations as a result of pairing errors at meiosis. To understand mechanisms of stabilization of allopolyploid species derived from distant chromosome bases, we investigated mitotic stability of a synthetic Cucumis allotetraploid species in relation to meiosis chromosome behavior. The Cucumis × hytivus is an allotetraploid synthesized from interspecific hybridization between cucumber (Cucumis sativus, 2n = 14) and its wild relative Cucumis hystrix (2n = 24) followed by spontaneous chromosome doubling. In the present study, we analyzed the wild parent C. hystrix and the latest generation of C. hytivus using GISH (genomic in situ hybridization) and cross-species FISH (fluorescence in situ hybridization). The karyotype of C. hystrix was constructed with two methods using cucumber fosmid clones and repetitive sequences. Using repeat-element probe mix in two successive hybridizations allowed for routine identification of all 19 homoeologous chromosomes of allotetraploid C. hytivus. No aneuploids were identified in any C. hytivus individuals that were characterized, and no large-scale chromosomal rearrangements were identified in this synthetic allotetraploid. Meiotic irregularities, such as homoeologous pairing, were frequently observed, resulting in univalent and intergenomic multivalent formation. The relatively stable chromosome structure of the synthetic Cucumis allotetraploid may be explained by more deleterious chromosomal viable gametes compared with other allopolyploids. The knowledge of genetic and genomic information of Cucumis allotetraploid species could provide novel insights into the establishment of allopolyploids with different chromosome bases.


Assuntos
Cromossomos de Plantas , Cucumis/genética , Genoma de Planta , Hibridização Genética , Poliploidia , Hibridização in Situ Fluorescente , Cariótipo , Meiose , Pólen/genética , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA