Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 164540, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270020

RESUMO

Phosphorus is a key nutrient that causes eutrophication in lakes. Our investigation of 11 eutrophic lakes found that the concentrations of soluble reactive phosphorus (SRP) in the water column and EPC0 in sediments decreased with aggravated eutrophication. There was a significant negative correlation between the SRP concentrations and eutrophication parameters such as chlorophyll a (Chl-a), total phosphorus (TP) and algal biomass (P < 0.001). In addition, SRP concentrations were significantly affected by EPC0 (P < 0.001), while EPC0 was significantly affected by the content of cyanobacterial organic matter (COM) in sediments (P < 0.001). Based on these findings, we hypothesized that COM can alter the phosphorus release characteristics of sediments, including the phosphorus adsorption parameters of sediment (PAPS) and the phosphorus release rate of sediment (PRRS), thereby stabilizing SRP concentrations at lower levels and rapidly replenishing them when depleted by phytoplankton, which in turn benefits cyanobacteria due to their low SRP adaptation strategies. Simulation experiments were conducted to confirm this hypothesis by adding higher plant OM and COM to sediments. The results showed that all types of OM could significantly increase the maximum phosphorus adsorption capacity (Qmax), but only COM could reduce sediment EPC0 and promote PRRS (P < 0.001). Changes in these parameters (i.e., Qmax, EPC0, and PRRS) resulted in a larger SRP adsorption quantity and faster SRP release rate at low SRP concentrations. This promotes the competitive edge of cyanobacteria due to they have a higher affinity for phosphorus than other algae. As an important component of cyanobacteria, EPS can change the phosphorus release characteristics (i.e., PAPS and PRRS) by reducing sediment particle size and increasing sediment surface functional groups. This study revealed the positive feedback effect of COM accumulation in sediments on lake eutrophication from the perspective of phosphorus release characteristics of sediments, which provides a basic reference for the risk assessment of lake eutrophication.


Assuntos
Cianobactérias , Síndrome Respiratória e Reprodutiva Suína , Poluentes Químicos da Água , Suínos , Animais , Fósforo/análise , Lagos/microbiologia , Clorofila A , Retroalimentação , Sedimentos Geológicos/microbiologia , Poluentes Químicos da Água/análise , Eutrofização , China
2.
Sci Total Environ ; 769: 144660, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736270

RESUMO

The processing of duckweed has been included in the list of promising pathways for biofuels production. This property is attributed to its simple manual harvesting method and its ability for high protein or starch content, depending on its species and growing environment. The biofuels production from duckweed, is not only a solution to energy and environmental problems, but also a reliable way to realize the utilization of duckweed. This critical review focuses on the bio-oil production from duckweed via pyrolysis and hydrothermal liquefaction processes. First, characteristics and eco-environmental benefits of duckweed are reviewed. Next, the impacts of different parameters on the properties and distribution of bio-oil from pyrolysis and hydrothermal liquefaction are discussed in detail. Subsequently, the effect of hydrogen donor solvents (as reaction media for upgrading) and catalysts on the upgrading of duckweed bio-oil are extensively discussed. This paper ends with the prospects for further development in thermochemical valorization of duckweed.


Assuntos
Araceae , Biocombustíveis , Biomassa , Óleos de Plantas , Polifenóis , Temperatura
3.
Environ Sci Pollut Res Int ; 26(9): 9113-9122, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30715698

RESUMO

The phosphorus (P) fraction and its release characteristics from sediment in response to flood events across different land covers (i.e., reclaimed land with dominant vegetation of Phragmites australis and/or Typha orientalis, grassland with dominant vegetation of annual and perennial forbs, and bare land) in the lakeshore of Chaohu Lake were investigated. The results indicated that the re-flooding of a restored wetland led to P release. IP (inorganic P) was the major P fraction in the soils pre-flood and post-flood. For all the soil samples, the rank order of P fractions was Ca-P (P associated with calcium) > OP (organic P) > Fe/Al-P (P bound to Al, Fe, and Mn oxides and hydroxides). During flooding, Fe/Al-P contributed the most as the P release source in the soils and to the P sources for the overlying water. In reclaimed land, Fe/Al-P release correlated significantly with soil pH. In grassland, Fe/Al-P release correlated significantly with soil pH and Al content. In bare land, Fe/Al-P release correlated significantly with Al and clay content. The max TP release rates were also significantly influenced by land cover, and the values in bare land, grassland, and reclaimed land were 9.91 mg P m-2 day-1, 8.10 mg P m-2 day-1, and 5.05 mg P m-2 day-1, respectively. The results showed that the P release processes might be regulated by different factors across different land covers, and that the re-introduction of vegetation during wetland restoration must be taken into account prior to flood events to avoid an undesirable degradation of water quality.


Assuntos
Inundações , Sedimentos Geológicos/química , Fósforo/química , Lagos/química , Poaceae/química , Poaceae/crescimento & desenvolvimento , Solo/química , Typhaceae/química , Typhaceae/crescimento & desenvolvimento , Qualidade da Água , Áreas Alagadas
4.
Se Pu ; 37(2): 201-206, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30693729

RESUMO

An innovative analytical method based on high resolution sampling two-dimensional liquid chromatography (HiRes 2D-LC) was established for determination of chlorogenic acid and cynaroside in Lonicerae Japonica Flos. A C18 column was used in the first dimension (1D)-LC separation with acetonitrile and 0.4% (v/v) phosphoric acid aqueous solution as mobile phases. Five heart cuts of chlorogenic acid and four heart cuts of cynaroside were stored in 2D-LC interface, which was a 5-position-10-port valve equipped with two multiple heart-cutting valves. The stored cuts were sequentially separated in the second dimension (2D)-LC. The 2D separation was carried out on an SB-Phenyl column with acetonitrile and 0.5% (v/v) acetic acid aqueous solution as mobile phases. The results showed that chlorogenic acid peaks in the 1D were well separated, whereas cynaroside peaks in the 1D were co-eluted with interferences. The above two targets were accurately quantified through a high resolution sampling mode based on continuous slice cuts of the whole target peaks. The method had good linearity, recovery and repeatability. The HiRes 2D-LC system could be used to improve separation and quantification of (un)targets in traditional Chinese medicine samples.


Assuntos
Ácido Clorogênico/análise , Medicamentos de Ervas Chinesas/análise , Glucosídeos/análise , Lonicera/química , Luteolina/análise , Cromatografia Líquida
5.
Sci Total Environ ; 652: 696-708, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380477

RESUMO

Lake eutrophication and the resulting cyanobacterial blooms have become a global water environment problem. These eutrophic lakes usually have relatively high internal phosphorus loading such as Fe-P to support the formation of cyanobacterial blooms. In order to reveal the mechanisms and processes of phosphorus cycling in lake sediments, in this study, Lake Chaohu was selected as the research area, and the effects of cyanobacterial bloom decomposition on the horizontal distribution pattern of Fe-P was studied by field investigation and laboratory simulations. According to the phosphorus fractions in the sediments, Lake Chaohu can be divided into three lake areas, and the Fe-P content in western Chaohu is the highest (908.6 ±â€¯54.9 mg kg-1). The contents and proportions of Fe-P were significantly positively correlated with cyanobacterial pigments in sediments, but they negatively correlated with undegraded chl-a, especially when the Fe-P content was <400 mg kg-1. Based on these statistical analyses, we proposed a hypothesis that the settled cyanobacterial organic matters (COM) could promote the formation of Fe-P. This hypothesis was proved by the simulation experiments of adding COM to the oligotrophic lakeshore clay. The results suggested that the content and proportion of Fe-P in sediments were significantly increased by the COM addition, and also, they were significantly positively correlated with the decomposition of the COM. The formation processes of Fe-P were further confirmed by the analysis of Fourier transform infrared (FT-IR) spectra. Microbial community analysis suggested that the bacterial species including FeOB and genus Pseudomonas might play an important role in the formation of Fe-P. This study suggested that the settled COM could enhance the eutrophication of sediments through a positive feedback cycle. Therefore, it is necessary to carry out bloom removal and sediment dredging simultaneously, and only then the cyanobacterial bloom can be effectively controlled.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Proliferação Nociva de Algas , Ferro/análise , Fósforo/análise , Poluentes Químicos da Água/análise , China , Eutrofização , Poluição da Água
6.
Mol Med Rep ; 17(6): 8237-8243, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29693145

RESUMO

Icariin, a traditional Chinese medicine, has previously been demonstrated to promote chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) in traditional 2D cell culture. The present study investigated whether icariin has the potential to promote stable chondrogenic differentiation of BMSCs without hypertrophy in a 3D microenvironment. BMSCs were cultivated in a self­assembling peptide nanofiber hydrogel scaffold in chondrogenic medium for 3 weeks. Icariin was added to the medium throughout the culture period at concentrations of 1x10­6 M. Chondrogenic differentiation markers, including collagen II and SRY­type high mobility group box 9 (SOX9) were detected by immunofluorescence, reverse transcription­quantitative polymerase chain reaction and toluidine blue staining. Hypertrophic differentiation was further assessed by detecting collagen X and collagen I gene expression levels and alkaline phosphatase activity. The results demonstrated that icariin significantly enhanced cartilage extracellular matrix synthesis and gene expression levels of collagen II and SOX9, and additionally promoted more chondrocyte­like rounded morphology in BMSCs. Furthermore, chondrogenic medium led to hypertrophic differentiation via upregulation of collagen X and collagen I gene expression levels and alkaline phosphatase activity, which was not potentiated by icariin. In conclusion, these results suggested that icariin treatment may promote chondrogenic differentiation of BMSCs, and inhibit the side effect of growth factor activity, thus preventing further hypertrophic differentiation. Therefore, icariin may be a potential compound for cartilage tissue engineering.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Flavonoides/farmacologia , Hidrogéis , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/genética , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Nanofibras , Ratos
7.
Environ Sci Technol ; 52(10): 5653-5661, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688011

RESUMO

Dolichospermum flos-aquae (formerly Anabaena flos-aquae) is a diazotrophic cyanobacterium causing harmful blooms worldwide, which is partly attributed to its capacity to compete for nitrogen (N) and phosphorus (P). Preventing the blooms by reducing P alone or both N and P has caused debate. To test the effects alone and together on the growth of cyanobacteria, we performed culture experiments in different eutrophication scenarios. N2 fixation in terms of heterocyst density, nitrogenase activity and nifH expression increased significantly in P-replete cultures, suggesting that P enrichment facilitates N2 fixation. Correspondingly, the expression of genes involved in P uptake, e.g., those involved in P-transport ( pstS) and the hydrolysis of phosphomonoesters ( phoD), was upregulated in P-deficient cultures. Interestingly, N addition enhanced not only the expression of these genes but also polyphosphate formation and alkaline phosphatase activity in P-deficient cultures relative to the P-replete cultures, as evidenced by qualitative (enzyme-labeled fluorescence) and quantitative (fluorogenic spectrophotometry) measurements. Furthermore, after N addition, cell activity and growth increased in the P-deficient cultures, underscoring the risk of N enrichment in P-limited systems. The eco-physiological responses shown here help further our understanding of the mechanism of N and P colimitation and underscore the importance of dual N and P reduction in controlling cyanobacterial blooms.


Assuntos
Dolichospermum flosaquae , Fósforo , Eutrofização , Nitrogênio , Nutrientes
8.
Sci Total Environ ; 621: 360-367, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29190559

RESUMO

Re-establishing submerged vegetation is considered an important tool to restore shallow eutrophic lakes. A whole year comparative field study was performed in a eutrophic lake and its connected pond with Potamogeton crispus in order to determine the effects of the growth and senescence of submerged macrophytes on structure of phytoplankton. P. crispus improved the water quality at the growing season in terms of improving transparency, decreasing total phosphorus, soluble reactive phosphorus (SRP) and chlorophyll a concentrations and slowering turnover rate of dissolved organic phosphorus (DOP). Meanwhile, dominant species shift from Chlorophyta to Diatom. Notably, senescence and decomposition of P. crispus in late spring resulted in an abrupt increase of DOP, providing a suitable growing environment for Euglena and dinoflagellates and a Peridiniopsis bloom occurred owing to their advantage in utilizing DOP. Peridiniopsis excreted phosphatase as evidence by simultaneously in situ enzyme labelled fluorescence (ELF) labelling and main alkaline phosphatase activity contributed by large particles, suggesting that the dominance of dinoflagellate with low SRP is enabled by its ability to efficiently hydrolyze DOP. Under the scenario of worldwide application of re-establishing submerged vegetation, our results provide the evidence of the negative environmental effects that occurred when transplanting P. crispus to recover a eutrophic lake.


Assuntos
Recuperação e Remediação Ambiental , Eutrofização , Lagos , Potamogetonaceae/crescimento & desenvolvimento , China , Clorofila/análise , Clorofila A , Fósforo/análise , Fitoplâncton , Qualidade da Água
9.
Environ Sci Pollut Res Int ; 24(21): 17679-17687, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28600795

RESUMO

Phosphorus (P) fractionation and sorption behavior as well as the abundance and community composition of phosphorus-solubilizing bacteria (PSB) in sediments, including inorganic phosphate-solubilizing bacteria (IPB) and organic phosphate-mineralizing bacteria (OPB), were investigated in 27 sampling sites of five sections in the Three Gorges Reservoir (TGR) in December 2012. The calcium-bound phosphorus (CaCO3∼P) accounted for the largest part for P fractions in the sediment of TGR, which was paralleled with IPB outnumbering OPB. Furthermore, some PSB isolates, such as Micromonospora sp., Aminobacter sp., and Arthrobacter sp., were shared by the IPB and OPB. Thus, some IPB species functioned as OPB and vise versa, which could be further reflected by a negative and significant relationship between PSB (IPB + OPB) number and content of CaCO3∼P together with acid-soluble organic phosphorus (ASOP). Spatially, the highest ASOP content in the section Mudong and the highest CaCO3∼P plus iron-bound phosphorus (Fe(OOH)∼P) as well as equilibrium phosphorus concentration (EPC0) in the sections of Yunyang and Zigui due to sediment sequestration by the dam, as well as the positive relationship between EPC0 and the ratios of different phosphorus species and phosphorus sorption maximum (Q max), jointly indicated pathway diversification and potential risk of phosphorus release mediated by PSB in TGR.


Assuntos
Bactérias , Sedimentos Geológicos , Fósforo , Água Doce , Rios
10.
Se Pu ; 33(9): 974-80, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26753286

RESUMO

An ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry (UPLC-PDA-MS/MS) method was developed for the determination of flavonol glycosides in tea samples. The chromatographic separation was performed on an UPLC HSS T3 column by gradient elution with the mobile phases of acetonitrile and water both containing 0.1% (v/v) formic acid. A total of 15 flavonol glycosides which include 3 myricetin glycosides, 6 quercetin glycosides and 6 kaempferol glycosides were positively identified in green and black tea samples by comparing the retention times and mass spectra of the samples with standards and publications. The quantities of flavonol glycosides were relatively calculated with the stand- ard quercetin-3-rhamnosylglucoside (Q-GRh) which was calibrated with external quantification method using multi-reaction monitoring (MRM) mode. The results showed that there were different flavonol glycoside distributions in green tea and black tea. The total amount of flavonol glycosides in green tea was 1. 7 times of that in black tea. The major flavonol glycosides in green tea were myricetin-3-galactoside (M-Ga), myricetin-3-glucoside (M-G), quercetin-3-glucosyl-rhamnosyl-galactoside (Q-GaRhG), quercetin-3-glucosyl-rhamnosyl-glucoside (Q-GRhG), kaempferol-3-glucosyl-rhamnosyl-galactoside (K-GaRhG) and kaempferol-3-glucosyl- rhamnosyl-glucoside (K-GRhG), but for black tea, the major flavonol glycosides were quercetin-3-rhamnosylglucoside (Q-GRh), quercetin-3-glucoside (Q-G), kaempferol-3-rhamnosylglucoside (K-GRh) and kaempferol-3-galactoside (K-Ga). The present method is accurate, convenient for the rapid identification of flavonol glycosides and analysis of constituent distribution for green and black teas.


Assuntos
Flavonóis/análise , Glicosídeos/análise , Chá/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA