Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(2): 1260-1270, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315019

RESUMO

Diabetic retinopathy (DR) is the most common retinal disorder, developed in 35% of patients with diabetes mellitus. Lower serum levels of 25-hydroxyvitamin D are associated with the increased risk of developing DR. High doses of the active form of vitamin D (VD), on the contrary, for a long period of time may lead to hypercalcemia and an imbalance in the regulation of bone metabolism. Herein, we studied the efficacy of dextran-gated carboxyphenylboronic acid (CPBA)-functionalized mesoporous silica nanoparticles (MSNs) for glucose-sensitive delivery of 1,25-dihydroxyvitamin D3 to modulate cellular oxidative stress and inflammation for managing DR. The physical adsorption technique was employed to load VD onto nanoparticles (263.63 µg/mg (w/w)). In the presence of glucose, the dextran molecules detach from pores, allowing VD to release since glucose has 1,2-cis diol groups which have very high affinity to CPBA. Approximately 75% of VD was released upon exposure to 25 mM glucose at a time point of 10 h, demonstrating glucose-responsive delivery. Furthermore, MSN-CPBA was able to deliver VD in a glucose-dependent manner and improve the bioavailability of VD. In high-glucose-supplemented human retinal cells, MSN-CPBA increased the bioavailability of VD and reduced cellular oxidative stress and inflammation. The results suggested that the VD-loaded nanocarrier exerted remarkable therapeutic capacity in reducing the risk of developing DR. By using MSN-CPBA as a delivery platform with dextran gating, the research proposes an effective treatment approach for improving the bioavailability and effectiveness of a hydrophobic molecule in the treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Nanopartículas , Humanos , Dextranos , Retinopatia Diabética/tratamento farmacológico , Dióxido de Silício/química , Glucose , Nanopartículas/uso terapêutico , Nanopartículas/química , Vitamina D/uso terapêutico , Inflamação
2.
Int J Biol Macromol ; 224: 1025-1039, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302484

RESUMO

The present study investigated the antidiabetic potential of protein isolates from Hawaijar (HPI), a popular fermented soybean food of North-East India. Treatment with HPI significantly upregulated glucose uptake, glucose utilization, glucose-6-phosphate, and stimulated PI3K/AKT/GLUT4 pathway in high-glucose (HG)-treated myotubes. Signal silencing studies demonstrated that knockdown of insulin-dependent signaling molecule (IR) but not insulin-independent signaling molecule (AMPK) significantly inhibited HPI-induced activation of PI3K/AKT/GLUT4 pathway and glucose uptake in HG-treated myotubes. SDS-PAGE and immunoblotting analyses of HPI showed the reduction and/or absence of various subunits of 7S and 11S globulin protein and appearance of new proteins compared to respective non-fermented soy protein isolates. Using various chromatographic techniques, the present study further isolated a single protein (ISP, ~24 kDa) from HPI as one of the bioactive principles with promising glucose utilization potential via stimulating PI3K/AKT/GLUT4 pathway in HG-treated cells. ISP treatment along with insulin significantly stimulated PI3K/AKT/GLUT4 pathway and glucose uptake compared to either insulin or ISP alone treated cells against HG exposure suggesting the insulin sensitizing effect of ISP. Furthermore, ISP supplementation significantly reduced metabolic markers linked with diabetes in high-fructose high-fat diet-fed animal model of type 2 diabetes. This study demonstrated a novel molecular mechanism underlying the promising antidiabetic potential of HPI.


Assuntos
Diabetes Mellitus Tipo 2 , Alimentos de Soja , Animais , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Insulina/metabolismo , Fibras Musculares Esqueléticas , Suplementos Nutricionais , Índia , Transportador de Glucose Tipo 4/metabolismo
3.
Int J Biol Macromol ; 194: 276-288, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848240

RESUMO

Soybean (Glycine max) harbours high quality proteins which have been evident to exhibit therapeutic properties in alleviating many diseases including but not limited to diabetes and its related metabolic complications. Since diabetes is often manifested with hyperglycemia, impaired energy homeostasis and even low-grade chronic inflammation, plenty of information has raised the suggestion for soy protein supplementation in preventing and controlling these abnormalities. Moreover, clinical intervention studies have established a noteworthy correlation between soy protein intake and lower prevalence of diabetes. Besides soy protein, various soy-derived peptides also have been found to trigger antidiabetic response in different in vitro and in vivo models. Molecular mechanisms underlying the antidiabetic actions of soy protein and peptide have been predicted in many literatures. Results demonstrate that components of soy protein can act in diversified ways and modulate various cell signaling pathways to bring energy homeostasis and to regulate inflammatory parameters associated with diabetic pathophysiology. The main objective of the present review lies in a systemic understanding of antidiabetic role of soy protein and peptide in the context of impaired glucose and lipid metabolism, and inflammation.


Assuntos
Glycine max/química , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Proteínas de Soja/farmacologia , Animais , Glicemia/efeitos dos fármacos , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Peptídeos/química , Peptídeos/uso terapêutico , Proteínas de Soja/química , Proteínas de Soja/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA