Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Clin Endocrinol Metab ; 104(3): 961-969, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597030

RESUMO

Context: Glucocorticoids regulate energy balance, in part by stimulating the orexigenic neuropeptide agouti-related protein (AgRP). AgRP neurons express glucocorticoid receptors, and glucocorticoids have been shown to stimulate AgRP gene expression in rodents. Objective: We sought to determine whether there is a relationship between plasma AgRP and hypothalamic AgRP in rats and to evaluate the relationship between cortisol and plasma AgRP in humans. Methods: We retrospectively evaluated plasma AgRP levels prior to transsphenoidal surgery in 31 patients with Cushing disease (CD) vs 31 sex- and body mass index-matched controls from a separate study. We then prospectively measured plasma AgRP, before and 6 to 12 months after surgery, in a subgroup of 13 patients with CD. Plasma and hypothalamic AgRP were measured in adrenalectomized rats with and without corticosterone replacement. Results: Plasma AgRP was stimulated by corticosterone in rats and correlated with hypothalamic AgRP expression. Plasma AgRP levels were higher in patients with CD than in controls (139 ± 12.3 vs 54.2 ± 3.1 pg/mL; P < 0.0001). Among patients with CD, mean 24-hour urine free cortisol (UFC) levels were 257 ± 39 µg/24 hours. Strong positive correlations were observed between plasma AgRP and UFC (r = 0.76; P < 0.0001). In 11 of 13 patients demonstrating surgical cure, AgRP decreased from 126 ± 20.6 to 62.5 ± 8.0 pg/mL (P < 0.05) postoperatively, in parallel with a decline in UFC. Conclusions: Plasma AgRP levels are elevated in CD, are tightly correlated with cortisol concentrations, and decline with surgical cure. These data support the regulation of AgRP by glucocorticoids in humans. AgRP's role as a potential biomarker and as a mediator of the adverse metabolic consequences of CD deserves further study.


Assuntos
Proteína Relacionada com Agouti/sangue , Glucocorticoides/metabolismo , Hidrocortisona/sangue , Hipersecreção Hipofisária de ACTH/sangue , Adulto , Idoso , Proteína Relacionada com Agouti/metabolismo , Animais , Corticosterona/administração & dosagem , Feminino , Humanos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Hipersecreção Hipofisária de ACTH/patologia , Hipersecreção Hipofisária de ACTH/cirurgia , Estudos Prospectivos , Ratos , Estudos Retrospectivos , Adulto Jovem
2.
J Clin Invest ; 125(2): 796-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25555215

RESUMO

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.


Assuntos
Diferenciação Celular , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Obesidade/metabolismo , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Nucleares/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
3.
Diabetes ; 63(5): 1572-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24487022

RESUMO

Transcription factor forkhead box O1 (FoxO1) regulates energy expenditure (EE), food intake, and hepatic glucose production. These activities have been mapped to specific hypothalamic neuronal populations using cell type-specific knockout experiments in mice. To parse out the integrated output of FoxO1-dependent transcription from different neuronal populations and multiple hypothalamic regions, we used transgenic mice expressing Cre recombinase from the Nkx2.1 promoter to ablate loxP-flanked Foxo1 alleles from a majority of hypothalamic neurons (Foxo1KO(Nkx2.1) mice). This strategy resulted in the expected inhibition of FoxO1 expression, but only produced a transient reduction of body weight as well as a decreased body length. The transient decrease of body weight in male mice was accompanied by decreased fat mass. Male Foxo1KO(Nkx2.1) mice show food intake similar to that in wild-type controls, and, although female knockout mice eat less, they do so in proportion to a reduced body size. EE is unaffected in Foxo1KO(Nkx2.1) mice, although small increases in body temperature are present. Unlike other neuron-specific Foxo1 knockout mice, Foxo1KO(Nkx2.1) mice are not protected from diet-induced obesity. These studies indicate that, unlike the metabolic effects of highly restricted neuronal subsets (proopiomelanocortin, neuropeptide Y/agouti-related peptide, and steroidogenic factor 1), those of neurons derived from the Nkx2.1 lineage either occur in a FoxO1-independent fashion or are compensated for through developmental plasticity.


Assuntos
Metabolismo Energético/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal/fisiologia , Linhagem da Célula/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/metabolismo , Proteínas Nucleares/genética , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/fisiologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
4.
Neurosurgery ; 74(4): E447-55; discussion E455, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24226425

RESUMO

BACKGROUND AND IMPORTANCE: Rarely, corticotrophic pituitary tumors take on an aggressive form characterized by rapid growth, invasion into local structures, compression of cranial nerves, and possible spread to distant sites. When conventional surgery, radiation therapy, and hormones fail to control progression and symptoms, alternative therapies are needed. A novel chemotherapeutic regimen of capecitabine and temozolomide (CAPTEM), originally designed in our laboratory, demonstrated dramatic antineoplastic effects against corticotrophic pituitary tumors. CLINICAL PRESENTATION: We present a case series of 4 patients with aggressive, adrenocorticotrophic hormone--producing pituitary tumors who had previously depleted all surgical, radiation, and hormonal therapies and were then treated with CAPTEM. Dramatic clinical improvements in neurological deficits and Cushing symptoms were evident in all patients after treatment was initiated. Confirmed by radiographic imaging, 2 of 4 patients demonstrated complete regression of disease, 1 patient had a 75% regression, and the fourth patient has ongoing stable disease for > 4.5 years at the time of this writing. Immunohistochemical analysis of patients' tumor samples showed low O-methyguanyl methyltransferase expression and adequate levels of mismatch repair enzymes (MLH-1, MSH-2, MSH-6, and PMS-2), which are important for the in vivo efficacy of CAPTEM. CONCLUSION: This is the first report of prolonged antitumor response to and radiographic complete remissions as a result of CAPTEM in patients with aggressive pituitary tumors who had exhausted all other therapies.


Assuntos
Adenoma Hipofisário Secretor de ACT/tratamento farmacológico , Adenoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Adenoma Hipofisário Secretor de ACT/patologia , Adenoma/patologia , Adulto , Capecitabina , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/análogos & derivados , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Hipersecreção Hipofisária de ACTH/etiologia , Hipersecreção Hipofisária de ACTH/patologia , Temozolomida
5.
Diabetes ; 62(10): 3373-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23835335

RESUMO

Successful development of antiobesity agents requires detailed knowledge of neural pathways controlling body weight, eating behavior, and peripheral metabolism. Genetic ablation of FoxO1 in selected hypothalamic neurons decreases food intake, increases energy expenditure, and improves glucose homeostasis, highlighting the role of this gene in insulin and leptin signaling. However, little is known about potential effects of FoxO1 in other neurons. To address this question, we executed a broad-based neuronal ablation of FoxO1 using Synapsin promoter-driven Cre to delete floxed Foxo1 alleles. Lineage-tracing experiments showed that NPY/AgRP and POMC neurons were minimally affected by the knockout. Nonetheless, Syn-Cre-Foxo1 knockouts demonstrated a catabolic energy homeostatic phenotype with a blunted refeeding response, increased sensitivity to leptin and amino acid signaling, and increased locomotor activity, likely attributable to increased melanocortinergic tone. We confirmed these data in mice lacking the three Foxo genes. The effects on locomotor activity could be reversed by direct delivery of constitutively active FoxO1 to the mediobasal hypothalamus, but not to the suprachiasmatic nucleus. The data reveal that the integrative function of FoxO1 extends beyond the arcuate nucleus, suggesting that central nervous system inhibition of FoxO1 function can be leveraged to promote hormone sensitivity and prevent a positive energy balance.


Assuntos
Ingestão de Alimentos , Fatores de Transcrição Forkhead/antagonistas & inibidores , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Locomoção/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Desenho de Fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/deficiência , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
6.
Peptides ; 37(1): 6-12, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22800691

RESUMO

This study used two mouse models with genetic manipulation of the melanocortin system to investigate prolactin regulation. Mice with overexpression of the melanocortin receptor (MC-R) agonist, α-melanocyte-stimulating hormone (Tg-MSH) or deletion of the MC-R antagonist agouti-related protein (AgRP KO) were studied. Male Tg-MSH mice had lower blood prolactin levels at baseline (2.9±0.3 vs. 4.7±0.7ng/ml) and after restraint stress (68±6.5 vs. 117±22ng/ml) vs. WT (p<0.05); however, pituitary prolactin content was not different. Blood prolactin was also decreased in male AgRP KO mice at baseline (4.2±0.5 vs. 7.6±1.3ng/ml) and after stress (60±4.5 vs. 86.1±5.7ng/ml) vs. WT (p<0.001). Pituitary prolactin content was lower in male AgRP KO mice (4.3±0.3 vs. 6.7±0.5µg/pituitary, p<0.001) vs. WT. No differences in blood or pituitary prolactin levels were observed in female AgRP KO mice vs. WT. Hypothalamic dopamine activity was assessed as the potential mechanism responsible for changes in prolactin levels. Hypothalamic tyrosine hydroxylase mRNA was measured in both genetic models vs. WT mice and hypothalamic dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content were measured in male AgRP KO and WT mice but neither were significantly different. However, these results do not preclude changes in dopamine activity as dopamine turnover was not directly investigated. This is the first study to show that baseline and stress-induced prolactin release and pituitary prolactin content are reduced in mice with genetic alterations of the melanocortin system and suggests that changes in hypothalamic melanocortin activity may be reflected in measurements of serum prolactin levels.


Assuntos
Hipotálamo/metabolismo , Melanocortinas/fisiologia , Prolactina/sangue , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Corticosterona/sangue , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Hipotálamo/enzimologia , Masculino , Melanocortinas/metabolismo , Metoclopramida/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipófise/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-MSH/genética , alfa-MSH/metabolismo
7.
Cell ; 149(6): 1314-26, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682251

RESUMO

Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. Accordingly, FoxO1 ablation in AgRP neurons of mice results in reduced food intake, leanness, improved glucose homeostasis, and increased sensitivity to insulin and leptin. Expression profiling of flow-sorted FoxO1-deficient AgRP neurons identifies G-protein-coupled receptor Gpr17 as a FoxO1 target whose expression is regulated by nutritional status. Intracerebroventricular injection of Gpr17 agonists induces food intake, whereas Gpr17 antagonist cangrelor curtails it. These effects are absent in Agrp-Foxo1 knockouts, suggesting that pharmacological modulation of this pathway has therapeutic potential to treat obesity.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Metabolismo Energético , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos
8.
Eur J Pharmacol ; 660(1): 213-9, 2011 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-21208604

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on the regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PC1/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Humanos , Hipotálamo/enzimologia , Mutação , Obesidade/enzimologia , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética
9.
Endocrinology ; 151(3): 1002-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20056830

RESUMO

Hypothalamic proopiomelanocortin (POMC)-derived MSH peptides and the melanocortin receptor antagonist, agouti-related protein (AgRP), interact to regulate energy balance. Both POMC and AgRP neurons express estrogen receptors, but little is known about estrogen regulation of the melanocortin system in the primate. We have therefore examined the effects of physiological doses of estradiol (E2) on POMC and AgRP in lumbar cerebrospinal fluid (CSF) of ovariectomized monkeys. POMC prohormone was measured by ELISA. AgRP was measured by RIA (sensitive for the more biologically active C-terminal AgRP(83-132) but also detects full-length AgRP) and by ELISA (measures primarily full length AgRP). In the first experiment, 14 animals were studied before and after 3 wk of E2. CSF POMC did not change, but AgRP(RIA) decreased from 7.9 +/- 1.2 to 4.7 +/- 1.2 fmol/ml after E2 (P = 0.03) and the POMC/AgRP(RIA) ratio increased from 4.2 +/- 0.89 to 6.8 +/- 1.04 (P = 0.04). AgRP(ELISA) did not change, but the ratio of AgRP(RIA) compared with AgRP(ELISA) was reduced after E2 (P = 0.02). In the second experiment, 11 animals were studied after 6 wk of E2, and similar changes were noted. The degree of AgRP(RIA) suppression with E2 was inversely related to body mass index (r = 0.569; P = 0.03). These results show for the first time that E2 suppresses AgRP(C-terminal) in CSF, increases the POMC to AgRP ratio, and may decrease AgRP processing, thus leading to increased melanocortin signaling. Furthermore, obesity was associated with resistance to the suppressive effects of E2 on AgRP, analogous to what is seen with obesity and leptin resistance.


Assuntos
Proteína Relacionada com Agouti/líquido cefalorraquidiano , Estradiol/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/líquido cefalorraquidiano , Animais , Estradiol/administração & dosagem , Feminino , Macaca mulatta , Ovariectomia
10.
Nat Med ; 15(10): 1195-201, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19767734

RESUMO

Reduced food intake brings about an adaptive decrease in energy expenditure that contributes to the recidivism of obesity after weight loss. Insulin and leptin inhibit food intake through actions in the central nervous system that are partly mediated by the transcription factor FoxO1. We show that FoxO1 ablation in pro-opiomelanocortin (Pomc)-expressing neurons in mice (here called Pomc-Foxo1(-/-) mice) increases Carboxypeptidase E (Cpe) expression, resulting in selective increases of alpha-melanocyte-stimulating hormone (alpha-Msh) and carboxy-cleaved beta-endorphin, the products of Cpe-dependent processing of Pomc. This neuropeptide profile is associated with decreased food intake and normal energy expenditure in Pomc-Foxo1(-/-) mice. We show that Cpe expression is downregulated by diet-induced obesity and that FoxO1 deletion offsets the decrease, protecting against weight gain. Moreover, moderate Cpe overexpression in the arcuate nucleus phenocopies features of the FoxO1 mutation. The dissociation of food intake from energy expenditure in Pomc-Foxo1(-/-) mice represents a model for therapeutic intervention in obesity and raises the possibility of targeting Cpe to develop weight loss medications.


Assuntos
Carboxipeptidase H/genética , Ingestão de Alimentos/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Neurônios/fisiologia , Obesidade/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Carboxipeptidase H/metabolismo , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/genética , alfa-MSH/genética , alfa-MSH/metabolismo , beta-Endorfina/genética , beta-Endorfina/metabolismo
11.
J Clin Invest ; 119(8): 2291-303, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19620781

RESUMO

The anorexigenic neuromodulator alpha-melanocyte-stimulating hormone (alpha-MSH; referred to here as alpha-MSH1-13) undergoes extensive posttranslational processing, and its in vivo activity is short lived due to rapid inactivation. The enzymatic control of alpha-MSH1-13 maturation and inactivation is incompletely understood. Here we have provided insight into alpha-MSH1-13 inactivation through the generation and analysis of a subcongenic mouse strain with reduced body fat compared with controls. Using positional cloning, we identified a maximum of 6 coding genes, including that encoding prolylcarboxypeptidase (PRCP), in the donor region. Real-time PCR revealed a marked genotype effect on Prcp mRNA expression in brain tissue. Biochemical studies using recombinant PRCP demonstrated that PRCP removes the C-terminal amino acid of alpha-MSH1-13, producing alpha-MSH1-12, which is not neuroactive. We found that Prcp was expressed in the hypothalamus in neuronal populations that send efferents to areas where alpha-MSH1-13 is released from axon terminals. The inhibition of PRCP activity by small molecule protease inhibitors administered peripherally or centrally decreased food intake in both wild-type and obese mice. Furthermore, Prcp-null mice had elevated levels of alpha-MSH1-13 in the hypothalamus and were leaner and shorter than the wild-type controls on a regular chow diet; they were also resistant to high-fat diet-induced obesity. Our results suggest that PRCP is an important component of melanocortin signaling and weight maintenance via control of active alpha-MSH1-13 levels.


Assuntos
Carboxipeptidases/fisiologia , Ingestão de Alimentos , alfa-MSH/antagonistas & inibidores , Animais , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/genética , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Hipotálamo/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/metabolismo , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/etiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Reação em Cadeia da Polimerase , Pirimidinas/farmacologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores de Melanocortina/fisiologia , alfa-MSH/fisiologia
12.
Peptides ; 29(3): 440-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18155809

RESUMO

Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.


Assuntos
Ingestão de Alimentos/fisiologia , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Melanocortina/agonistas , gama-MSH/química , gama-MSH/farmacologia
13.
Endocrinology ; 147(4): 1621-31, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16384863

RESUMO

Agouti-related protein (AGRP) plays a key role in energy homeostasis. The carboxyl-terminal domain of AGRP acts as an endogenous antagonist of the melanocortin-4 receptor (MC4-R). It has been suggested that the amino-terminal domain of AGRP binds to syndecan-3, thereby modulating the effects of carboxyl-terminal AGRP at the MC4-R. This model assumes that AGRP is secreted as a full-length peptide. In this study we found that AGRP is processed intracellularly after Arg(79)-Glu(80)-Pro(81)-Arg(82). The processing site suggests cleavage by proprotein convertases (PCs). RNA interference and overexpression experiments showed that PC1/3 is primarily responsible for cleavage in vitro, although both PC2 and PC5/6A can also process AGRP. Dual in situ hybridization demonstrated that PC1/3 is expressed in AGRP neurons in the rat hypothalamus. Moreover, hypothalamic extracts from PC1-null mice contained 3.3-fold more unprocessed full-length AGRP, compared with wild-type mice, based on combined HPLC and RIA analysis, demonstrating that PC1/3 plays a role in AGRP cleavage in vivo. We also found that AGRP(83-132) is more potent an antagonist than full-length AGRP, based on cAMP reporter assays, suggesting that posttranslational cleavage is required to potentiate the effect of AGRP at the MC4-R. Because AGRP is cleaved into distinct amino-terminal and carboxyl-terminal peptides, we tested whether amino-terminal peptides modulate food intake. However, intracerebroventricular injection of rat AGRP(25-47) and AGRP(50-80) had no effect on body weight, food intake, or core body temperature. Because AGRP is cleaved before secretion, syndecan-3 must influence food intake independently of the MC4-R.


Assuntos
Glicoproteínas de Membrana/fisiologia , Fragmentos de Peptídeos/metabolismo , Pró-Proteína Convertase 1/fisiologia , Processamento de Proteína Pós-Traducional , Proteoglicanas/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Proteína Relacionada com Agouti , Animais , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Hormônios Peptídicos/farmacologia , Ratos , Ratos Sprague-Dawley , Sindecana-3
14.
Brain Res ; 1032(1-2): 141-8, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15680952

RESUMO

Agouti-related protein (AGRP) and proopiomelanocortin (POMC) have opposing effects on melanocortin receptor (MC-R) signaling and energy balance, and are important targets for leptin and insulin in the hypothalamus. While food intake and leptin have documented effects on POMC and AGRP gene expression, and insulin has effects on POMC gene expression, little is known about their effects on POMC or AGRP peptide release. Here we have examined the effects of fasting, leptin, and insulin on the release of AGRP and the POMC-derived peptide gamma(3)-MSH from the perifused rat hypothalamus in vitro. In the first experiment, fasting (48 h) resulted in a significant overall decrease in gamma(3)-MSH release measured every 20 min during a 3-h baseline perifusion period and after depolarization with 56 mM KCl (p = 0.02); there was a trend towards an overall increase in the release of AGRP but this was not significant. When the ratio of gamma(3)-MSH/AGRP release was calculated at each time point, there was an overall decrease in gamma(3)-MSH/AGRP with fasting (p < 0.01). Further examination of the ratio of gamma(3)-MSH/AGRP revealed a 34% reduction (p < 0.05) in the basal area under the curve (AUC) and a 33% reduction (p < 0.01) in the post-KCl stimulated AUC in fasted vs. fed animals. In the second experiment, perifusion of hypothalamic slices with 10(-8) or 10(-7) M leptin for 2 h resulted in a significant decrease in the release of AGRP noted primarily after depolarization with KCl (p < 0.01); no effect was seen on gamma(3)-MSH release. Similarly, in a third experiment, perifusion with 10(-7) M insulin caused a significant decrease in AGRP release (p < 0.001) without affecting gamma(3)-MSH release. Thus, there is a significant decrease in gamma(3)-MSH and the ratio of gamma(3)-MSH to AGRP released during fasting, consistent with a net inhibition of hypothalamic MC-R signaling. In contrast, short-term treatment with leptin and insulin may inhibit MC-R signaling primarily by decreasing the release of AGRP.


Assuntos
Jejum , Hipotálamo/efeitos dos fármacos , Insulina/farmacologia , Leptina/farmacologia , Pró-Opiomelanocortina/metabolismo , Proteínas/metabolismo , Proteína Relacionada com Agouti , Animais , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Hipotálamo/metabolismo , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Cloreto de Potássio/farmacologia , Radioimunoensaio/métodos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
15.
Brain Res ; 958(1): 130-8, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12468037

RESUMO

Glucocorticoids regulate body energy balance through both peripheral and central mechanisms. In order to understand the central mechanisms that mediate these effects of glucocorticoids we studied the effects of adrenalectomy (ADX) and food deprivation on the expression of four neuropeptide genes (measured by S1 nuclease protection assay) in the medial basal hypothalamus (MBH), which are known to regulate energy balance: pro-opiomelanocortin (POMC), agouti-related peptide (AGRP), neuropeptide Y (NPY), and cocaine and amphetamine regulated transcript (CART). Adult male rats were ADX or sham operated (SHAM), and studied 1-2 weeks later. In the first study effects of ADX and corticosterone replacement on POMC and AGRP expression were determined. ADX decreased POMC and AGRP gene expression in the MBH by 27 and 38%, respectively, compared to SHAM rats. Corticosterone treatment increased the expression of POMC by 87% and AGRP by 45% in ADX rats. The second study was designed to determine if glucocorticoids are necessary for the fasting induced changes in POMC, AGRP, NPY and CART in the MBH. ADX caused a 20-30% decrease in the expression of all four neuropeptide genes in the MBH. As expected, fasting suppressed POMC and CART expression and increased AGRP and NPY expression. The fasting-induced increases in AGRP and NPY persisted after ADX but no further significant decreases in POMC or CART were noted after fasting in ADX rats. Plasma leptin and insulin declined significantly after ADX and increased with corticosterone replacement; both leptin and insulin declined further in fasted, ADX animals. In conclusion, ADX decreases both anorexigenic, POMC and CART, and orexigenic, AGRP and NPY, neuropeptide gene expression in the MBH. AGRP and NPY decrease after ADX despite the fall in plasma leptin and insulin concentrations which in other situations would increase these neuropeptides. Furthermore, glucocorticoids are not required for fasting-induced upregulation of AGRP and NPY expression.


Assuntos
Córtex Suprarrenal/metabolismo , Metabolismo Energético/fisiologia , Privação de Alimentos/fisiologia , Glucocorticoides/deficiência , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Proteína Relacionada com Agouti , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Corticosterona/deficiência , Corticosterona/farmacologia , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Leptina/sangue , Masculino , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética , Proteínas/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA