Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Endocrinology ; 158(6): 1977-1984, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368510

RESUMO

3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone (TH)-derived metabolite that induces severe hypothermia in mice after systemic administration; however, the underlying mechanisms have remained enigmatic. We show here that the rapid 3-T1AM-induced loss in body temperature is a consequence of peripheral vasodilation and subsequent heat loss (e.g., over the tail surface). The condition is subsequently intensified by hypomotility and a lack of brown adipose tissue activation. Although the possible 3-T1AM targets trace amine-associated receptor 1 or α2a-adrenergic receptor were detected in tail artery and aorta respectively, myograph studies did not show any direct effect of 3-T1AM on vasodilation, suggesting that its actions are likely indirect. Intracerebroventricular application of 3-T1AM, however, replicated the phenotype of tail vasodilation and body temperature decline and led to neuronal activation in the hypothalamus, suggesting that the metabolite causes tail vasodilation through a hypothalamic signaling pathway. Consequently, the 3-T1AM response constitutes anapyrexia rather than hypothermia and closely resembles the heat-stress response mediated by hypothalamic temperature-sensitive neurons. Our results thus underline the well-known role of the hypothalamus as the body's thermostat and suggest an additional molecular link between TH signaling and the central control of body temperature.


Assuntos
Encéfalo/fisiologia , Cauda/irrigação sanguínea , Tironinas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Cauda/efeitos dos fármacos , Tironinas/administração & dosagem
2.
Curr Biol ; 25(22): 2997-3003, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26549257

RESUMO

Hypothalamic tanycytes are considered to function as sensors of peripheral metabolism. To facilitate this role, they express a wide range of receptors, including fibroblast growth factor receptor 1 (FGFR1). Using a monoclonal antibody (IMC-H7) that selectively antagonizes the FGFR1c isoform, we investigated possible actions of FGFR1c in a natural animal model of adiposity, the Siberian hamster. Infusion of IMC-H7 into the third ventricle suppressed appetite and increased energy expenditure. Likewise, peripheral treatment with IMC-H7 decreased appetite and body weight and increased energy expenditure and fat oxidation. A greater reduction in body weight and caloric intake was observed in response to IMC-H7 during the long-day fat state as compared to the short-day lean state. This enhanced response to IMC-H7 was also observed in calorically restricted hamsters maintained in long days, suggesting that it is the central photoperiodic state rather than the peripheral adiposity that determines the response to FGFR1c antagonism. Hypothalamic thyroid hormone availability is controlled by deiodinase enzymes (DIO2 and DIO3) expressed in tanycytes and is the key regulator of seasonal cycles of energy balance. Therefore, we determined the effect of IMC-H7 on hypothalamic expression of these deiodinase enzymes. The reductions in food intake and body weight were always associated with decreased expression of DIO2 in the hypothalamic ependymal cell layer containing tanycytes. These data provide further support for the notion the tanycytes are an important component of the mechanism by which the hypothalamus integrates central and peripheral signals to regulate energy intake and expenditure.


Assuntos
Anticorpos Monoclonais/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Adiposidade/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Ritmo Circadiano/fisiologia , Cricetinae , Hipotálamo/metabolismo , Masculino , Modelos Animais , Phodopus , Fotoperíodo , Isoformas de Proteínas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Magreza/metabolismo , Hormônios Tireóideos/metabolismo , Redução de Peso/efeitos dos fármacos
3.
Endocrinology ; 153(1): 101-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22028444

RESUMO

Siberian hamsters display photoperiodically regulated annual cycles in body weight, appetite, and reproduction. Previous studies have revealed a profound up-regulation of type 3 deiodinase (DIO3) mRNA in the ventral ependyma of the hypothalamus associated with hypophagia and weight loss in short-day photoperiods. DIO3 reduces the local availability of T(3), so the aim of this study was to test the hypothesis that decreased hypothalamic T(3) availability underlies the short-day-induced catabolic state. The experimental approach was to determine whether a local increase in T(3) in the hypothalamus of hamsters exposed to short days could reverse the behavioral and physiological changes induced by this photoperiod. In study 1, microimplants releasing T(3) were placed bilaterally into the hypothalamus. This treatment rapidly induced a long-day phenotype including increased appetite and body weight within 3 wk of treatment and increased fat mass and testis size by the end of the 10-wk study period. In study 2, hypothalamic T(3) implants were placed into hamsters carrying abdominal radiotelemetry implants. Again body weight increased significantly, and the occurrence of winter torpor bouts was dramatically decreased to less than one bout per week, whereas sham-implanted hamsters entered torpor up to six times a week. Our findings demonstrate that increased central T(3) induces a long-day metabolic phenotype, but in neither study was the molt cycle affected, so we infer that we had not disrupted the initial detection of photoperiod. We conclude that hypothalamic thyroid hormone availability plays a key role in seasonal regulation of appetite, body weight, and torpor.


Assuntos
Hipotálamo/metabolismo , Phodopus/anatomia & histologia , Phodopus/fisiologia , Tri-Iodotironina/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Cricetinae , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Masculino , Muda/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Fotoperíodo , Precursores de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Hormônio Liberador de Tireotropina/genética , Tri-Iodotironina/administração & dosagem
4.
Physiol Behav ; 103(3-4): 268-78, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21362434

RESUMO

We investigated whether histaminergic tone contributes to the seasonal catabolic state in Siberian hamsters by determining the effect of ablation of histaminergic neurons on food intake, metabolic rate and body weight. A ribosomal toxin (saporin) conjugated to orexin-B was infused into the ventral tuberomammillary region of the hypothalamus, since most histaminergic neurons express orexin receptors. This caused not only 75-80% loss of histaminergic neurons in the posterior hypothalamus, but also some loss of other orexin-receptor expressing cells e.g. MCH neurons. In the long-day anabolic state, lesions produced a transient post-surgical decrease in body weight, but the hamsters recovered and maintained constant body weight, whereas weight gradually increased in sham-lesioned hamsters. VO(2) in the dark phase was significantly higher in the lesioned hamsters compared to shams, and locomotor activity also tended to be higher. In a second study in short days, sham-treated hamsters showed the expected seasonal decrease in body weight, but weight remained constant in the lesioned hamsters, as in the long-day study. Lesioned hamsters consumed more during the early dark phase and less during the light phase due to an increase in the frequency of meals during the dark and decreased meal size during the light, and their cumulative food intake in their home cages was greater than in the control hamsters. In summary, ablation of orexin-responsive cells in the posterior hypothalamus blocks the short-day induced decline in body weight by preventing seasonal hypophagia, evidence consistent with the hypothesis that central histaminergic mechanisms contribute to long-term regulation of body weight.


Assuntos
Peso Corporal/fisiologia , Ritmo Circadiano/fisiologia , Ingestão de Alimentos/fisiologia , Histamina/metabolismo , Estações do Ano , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cricetinae , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Histidina Descarboxilase/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imunotoxinas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Melaninas/metabolismo , Neuropeptídeos/farmacologia , Neurotransmissores/farmacologia , Orexinas , Consumo de Oxigênio/efeitos dos fármacos , Phodopus , Hormônios Hipofisários/metabolismo , Troca Gasosa Pulmonar/efeitos dos fármacos , Troca Gasosa Pulmonar/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Fatores de Tempo
5.
Endocrinology ; 148(8): 3608-17, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17478556

RESUMO

Seasonal adaptations in physiology exhibited by many animals involve an interface between biological timing and specific neuroendocrine systems, but the molecular basis of this interface is unknown. In this study of Siberian hamsters, we show that the availability of thyroid hormone within the hypothalamus is a key determinant of seasonal transitions. The expression of the gene encoding type III deiodinase (Dio3) and Dio3 activity in vivo (catabolism of T(4) and T(3)) is dynamically and temporally regulated by photoperiod, consistent with the loss of hypothalamic T(3) concentrations under short photoperiods. Chronic replacement of T(3) in the hypothalamus of male hamsters exposed to short photoperiods, thus bypassing synthetic or catabolic deiodinase enzymes located in cells of the ependyma of the third ventricle, prevented the onset of short-day physiology: hamsters maintained a long-day body weight phenotype and failed to undergo testicular and epididymal regression. However, pelage moult to a winter coat was not affected. Type II deiodinase gene expression was not regulated by photoperiod in these hamsters. Collectively, these data point to a pivotal role for hypothalamic DIO3 and T(3) catabolism in seasonal cycles of body weight and reproduction in mammals.


Assuntos
Peso Corporal/fisiologia , Hipotálamo/fisiologia , Reprodução/fisiologia , Estações do Ano , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Ritmo Circadiano/fisiologia , Cricetinae , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Expressão Gênica/fisiologia , Cabelo/fisiologia , Hipotálamo/enzimologia , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Metabolismo , Fenótipo , Phodopus , Fotoperíodo , Iodotironina Desiodinase Tipo II
6.
Endocrinology ; 148(8): 4044-55, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17463057

RESUMO

The Siberian hamster survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. VGF gene expression is photoperiodically regulated in the hypothalamus with significantly higher expression in lean Siberian hamsters. The aim of this study was to investigate the role of VGF in regulating these seasonal cycles by determining the effects of a VGF-derived peptide (TLQP-21) on food intake and body weight. Acute intracerebroventricular administration of TLQP-21 decreased food intake, and chronic treatment caused a sustained reduction in food intake and body weight and decreased abdominal fat depots. Behavioral analysis revealed that TLQP-21 reduced meal size but not the frequency of feeding bouts, suggesting a primary action on satiety. Hamsters treated with TLQP-21 lost a similar amount of weight as a pair-fed group in which food intake was matched to that of the TLQP-21-treated group. Central or peripheral treatment with TLQP-21 did not produce a significant effect on resting metabolic rate. We conclude that the primary action of TLQP-21 is to decrease food intake rather than increase energy expenditure. TLQP-21 treatment caused a decrease in UCP-1 mRNA in brown adipose tissue, but hypothalamic expression of orexigenic and anorexigenic neuropeptide genes remained unchanged after TLQP-21 treatment, although compensatory increases in NPY and AgRP mRNA were observed in the pair-fed hamsters. The effects of TLQP-21 administration are similar to those in hamsters in short days, suggesting that increased VGF activity may contribute to the hypophagia that underlies the seasonal catabolic state.


Assuntos
Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Neuropeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Cricetinae , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Injeções Intraventriculares , Masculino , Neuropeptídeos/síntese química , Neuropeptídeos/farmacologia , Tamanho do Órgão , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Phodopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA