Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557303

RESUMO

Chronic alcohol consumption leads to disturbances in intestinal function which can be exacerbated by inflammation and modulated by different factors, e.g., polyunsaturated fatty acids (PUFAs). The mechanisms underlying these alterations are not well understood. In this study, RNA-seq analysis was performed on ileum tissue from WT and fat-1 transgenic mice (which have elevated endogenous n-3 PUFAs). Mice were chronically fed ethanol (EtOH) and challenged with a single lipopolysaccharide (LPS) dose to induce acute systemic inflammation. Both WT and fat-1 mice exhibited significant ileum transcriptome changes following EtOH + LPS treatment. Compared to WT, fat-1 mice had upregulated expression of genes associated with cell cycle and xenobiotic metabolism, while the expression of pro-inflammatory cytokines and pro-fibrotic genes was decreased. In response to EtOH + LPS, fat-1 mice had an increased expression of genes related to antibacterial B cells (APRIL and IgA), as well as an elevation in markers of pro-restorative macrophages and γδ T cells that was not observed in WT mice. Our study significantly expands the knowledge of regulatory mechanisms underlying intestinal alterations due to EtOH consumption and inflammation and identifies the beneficial transcriptional effects of n-3 PUFAs, which may serve as a viable nutritional intervention for intestinal damage resulting from excessive alcohol consumption.


Assuntos
Etanol/toxicidade , Ácidos Graxos Dessaturases/fisiologia , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Íleo/metabolismo , Inflamação/metabolismo , Animais , Depressores do Sistema Nervoso Central/toxicidade , Perfilação da Expressão Gênica , Humanos , Íleo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Masculino , Camundongos , Camundongos Transgênicos
2.
FASEB J ; 35(2): e21377, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481293

RESUMO

Alcohol-associated liver disease (ALD) is a major human health issue for which there are limited treatment options. Experimental evidence suggests that nutrition plays an important role in ALD pathogenesis, and specific dietary fatty acids, for example, n6 or n3-PUFAs, may exacerbate or attenuate ALD, respectively. The purpose of the current study was to determine whether the beneficial effects of n3-PUFA enrichment in ALD were mediated, in part, by improvement in Wnt signaling. Wild-type (WT) and fat-1 transgenic mice (that endogenously convert n6-PUFAs to n3) were fed ethanol (EtOH) for 6 weeks followed by a single LPS challenge. fat-1 mice had less severe liver damage than WT littermates as evidenced by reduced plasma alanine aminotransferase, hepatic steatosis, liver tissue neutrophil infiltration, and pro-inflammatory cytokine expression. WT mice had a greater downregulation of Axin2, a key gene in the Wnt pathway, than fat-1 mice in response to EtOH and LPS. Further, there were significant differences between WT and fat-1 EtOH+LPS-challenged mice in the expression of five additional genes linked to the Wnt signaling pathway, including Apc, Fosl1/Fra-1, Mapk8/Jnk-1, Porcn, and Nkd1. Compared to WT, primary hepatocytes isolated from fat-1 mice exhibited more effective Wnt signaling and were more resistant to EtOH-, palmitic acid-, or TNFα-induced cell death. Further, we demonstrated that the n3-PUFA-derived lipid mediators, resolvins D1 and E1, can regulate hepatocyte expression of several Wnt-related genes that were differentially expressed between WT and fat-1 mice. These data demonstrate a novel mechanism by which n3-PUFAs can ameliorate ALD.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Substâncias Protetoras/metabolismo , Via de Sinalização Wnt , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Etanol/efeitos adversos , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Dessaturases/genética , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inflamação/genética , Lipopolissacarídeos/efeitos adversos , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
3.
PLoS One ; 13(9): e0204119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256818

RESUMO

Alcoholic liver disease (ALD), a significant health problem, progresses through the course of several pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. There are no effective FDA-approved medications to prevent or treat any stages of ALD, and the mechanisms involved in ALD pathogenesis are not well understood. Bioactive lipid metabolites play a crucial role in numerous pathological conditions, as well as in the induction and resolution of inflammation. Herein, a hepatic lipidomic analysis was performed on a mouse model of ALD with the objective of identifying novel metabolic pathways and lipid mediators associated with alcoholic steatohepatitis, which might be potential novel biomarkers and therapeutic targets for the disease. We found that ethanol and dietary unsaturated, but not saturated, fat caused elevated plasma ALT levels, hepatic steatosis and inflammation. These pathologies were associated with increased levels of bioactive lipid metabolites generally involved in pro-inflammatory responses, including 13-hydroxy-octadecadienoic acid, 9,10- and 12,13-dihydroxy-octadecenoic acids, 5-, 8-, 9-, 11-, 15-hydroxy-eicosatetraenoic acids, and 8,9- and 11,12-dihydroxy-eicosatrienoic acids, in parallel with an increase in pro-resolving mediators, such as lipoxin A4, 18-hydroxy-eicosapentaenoic acid, and 10S,17S-dihydroxy-docosahexaenoic acid. Elucidation of alterations in these lipid metabolites may shed new light into the molecular mechanisms underlying ALD development/progression, and be potential novel therapeutic targets.


Assuntos
Gorduras na Dieta/efeitos adversos , Etanol/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Oxilipinas/metabolismo , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Etanol/administração & dosagem , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Fígado/lesões , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA