Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 92(11): 724-732, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27185241

RESUMO

PURPOSE: To investigate an enhancement of DNA double-strand break (DSB) induction and cell killing effect by K-shell ionization of phosphorus atoms and Auger electrons on human cell lines. MATERIALS AND METHODS: Induction of DSB, DNA damage responses, cell cycle distributions, and cell killing effects were investigated after exposures of the cells with monochromatic synchrotron radiation soft X-rays of 2153 and 2147 eV, which were the resonance peak and off peak, respectively, of the K-shell photoabsorption of phosphorus. RESULTS: Higher biological effects in the cells irradiated with soft X-rays at 2153 eV than at 2147 eV were observed in (i) the efficiency of 53BP1/γ-H2AX co-localized foci formation per dose and residual number of foci, (ii) prolonged phosphorylation levels of DSB repair and/or cell cycle checkpoint related proteins and G2 arrest, (iii) the cell killing effects at the 10% survival level of normal human fibroblasts, HeLa cells, and human glioblastoma M059K cells (1.2-1.5 times higher) and that of human ataxia telangiectasia mutated (ATM)-defective cells and glioblastoma DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-defective cells (1.2 times). CONCLUSION: The yield of DSB and partly less-reparable complex DNA damage induction in human cells was enhanced by K-shell photoabsorption of phosphorus and low-energy Auger electrons.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Dano ao DNA/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/radioterapia , Fósforo/efeitos da radiação , Absorção de Radiação , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Elétrons/uso terapêutico , Humanos , Neoplasias Experimentais/patologia , Dosagem Radioterapêutica , Resultado do Tratamento
2.
Radiat Res ; 172(3): 296-305, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19708778

RESUMO

To characterize the DNA damage induced by K-shell ionization of phosphorus atom in DNA backbone on the level of hydration, the yields of DNA strand breaks and base lesions arising from the interaction of ultrasoft X rays with energies around the phosphorus K edge were determined using dry and fully hydrated pUC18 plasmid DNA samples. Base lesions and bistranded clustered DNA damage sites were revealed by postirradiation treatment with the base excision repair proteins endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of prompt single-strand breaks (SSBs) with dry DNA irradiated at the phosphorus K resonance energy (2153 eV) is about one-third that below the phosphorus K edge (2147 eV). The yields of prompt double-strand breaks (DSBs) were found to be less dependent on the X-ray energy, with the yields being about two times lower when irradiated at 2153 eV. Heat-labile sites were not produced in detectable amounts. The yields of base lesions were dependent on the energy of the X rays, especially when the DNA was fully hydrated. Bistranded clustered DNA damage sites, revealed enzymatically as additional DSBs, were produced in dry as well as in hydrated DNA with all three energies of X rays. The yields of these enzyme-sensitive sites were also lower when irradiated at the phosphorus K resonance energy. On the other hand, the yields of prompt SSBs and enzyme-sensitive sites for the two off-resonance energies were, larger than those determined previously for gamma radiation. The results indicate that the photoelectric effect caused by X rays and dense ionization and excitation events along the tracks of low-energy secondary electrons are more effective at inducing SSBs and enzyme-sensitive sites. The complex types of damage, prompt and enzymatically induced DSBs, are preferentially induced by phosphorus K resonance at 2153 eV rather than simple SSBs and isolated base lesions, particularly in hydrated conditions. It is concluded that not only the phosphorus K resonance and resulting emission of low-energy LMM-Auger electrons ( approximately 120 eV) but also the level of hydration plays an important role in the induction of complex damage in plasmid DNA.


Assuntos
Dano ao DNA , DNA/química , DNA/ultraestrutura , Modelos Químicos , Modelos Moleculares , Plasmídeos/química , Plasmídeos/efeitos da radiação , Simulação por Computador , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Conformação de Ácido Nucleico/efeitos da radiação , Fósforo , Plasmídeos/ultraestrutura , Doses de Radiação , Soluções , Água/química , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA