Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943904

RESUMO

BACKGROUND: Boron neutron capture therapy (BNCT) is a nuclear reaction-based tumor cell-selective particle irradiation method. High-dose methotrexate and whole-brain radiation therapy (WBRT) are the recommended treatments for primary central nervous system lymphoma (PCNSL). This tumor responds well to initial treatment but relapses even after successful treatment, and the prognosis is poor as there is no safe and effective treatment for relapse. In this study, we aimed to conduct basic research to explore the possibility of using BNCT as a treatment for PCNSL. METHODS: The boron concentration in human lymphoma cells was measured. Subsequently, neutron irradiation experiments on lymphoma cells were conducted. A mouse central nervous system (CNS) lymphoma model was created to evaluate the biodistribution of boron after the administration of borono-phenylalanine as a capture agent. In the neutron irradiation study of a mouse PCNSL model, the therapeutic effect of BNCT on PCNSL was evaluated in terms of survival. RESULTS: The boron uptake capability of human lymphoma cells was sufficiently high both in vitro and in vivo. In the neutron irradiation study, the BNCT group showed a higher cell killing effect and prolonged survival compared with the control group. CONCLUSIONS: A new therapeutic approach for PCNSL is urgently required, and BNCT may be a promising treatment for PCNSL. The results of this study, including those of neutron irradiation, suggest success in the conduct of future clinical trials to explore the possibility of BNCT as a new treatment option for PCNSL.


Assuntos
Terapia por Captura de Nêutron de Boro , Encéfalo/efeitos da radiação , Neoplasias do Sistema Nervoso Central/radioterapia , Linfoma/radioterapia , Animais , Apoptose/efeitos da radiação , Boro/química , Boro/isolamento & purificação , Boro/farmacologia , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Irradiação Craniana , Modelos Animais de Doenças , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Metotrexato/farmacologia , Camundongos , Fenilalanina/química , Fenilalanina/isolamento & purificação , Fenilalanina/farmacologia , Distribuição Tecidual/efeitos dos fármacos
2.
Cancer Lett ; 370(1): 27-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26455769

RESUMO

Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours.


Assuntos
Compostos de Boro/metabolismo , Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas/radioterapia , Encéfalo/metabolismo , Fenilalanina/administração & dosagem , Compostos de Boro/antagonistas & inibidores , Compostos de Boro/farmacocinética , Neoplasias Encefálicas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Fenilalanina/análogos & derivados , Fenilalanina/antagonistas & inibidores , Fenilalanina/farmacocinética , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA