Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Urol ; 40(12): 2911-2918, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357601

RESUMO

PURPOSE: The risk of treatment-related toxicity is important for patients with localised prostate cancer to consider when deciding between treatment options. We developed a model to predict hospitalisation for radiation-induced genitourinary toxicity based on patient characteristics. METHODS: The prospective South Australian Prostate Cancer Clinical Outcomes registry was used to identify men with localised prostate cancer who underwent curative intent external beam radiotherapy (EBRT) between 1998 and 2019. Multivariable Cox proportional regression was performed. Model discrimination, calibration, internal validation and utility were assessed using C-statistics and area under ROC, calibration plots, bootstrapping, and decision curve analysis, respectively. RESULTS: There were 3,243 patients treated with EBRT included, of which 644 (20%) patients had a treated-related admission. In multivariable analysis, diabetes (HR 1.35, 95% CI 1.13-1.60, p < 0.001), smoking (HR 1.78, 95% CI 1.40-2.12, p < 0.001), and bladder outlet obstruction (BOO) without transurethral resection of prostate (TURP) (HR 7.49, 95% CI 6.18-9.08 p < 0.001) followed by BOO with TURP (HR 4.96, 95% CI 4.10-5.99 p < 0.001) were strong independent predictors of hospitalisation (censor-adjusted c-statistic = 0.80). The model was well-calibrated (AUC = 0.76). The global proportional hazards were met. In internal validation through bootstrapping, the model was reasonably discriminate at five (AUC 0.75) years after radiotherapy. CONCLUSIONS: This is the first study to develop a predictive model for genitourinary toxicity requiring hospitalisation amongst men with prostate cancer treated with EBRT. Patients with localised prostate cancer and concurrent BOO may benefit from TURP before EBRT.


Assuntos
Braquiterapia , Neoplasias da Próstata , Lesões por Radiação , Ressecção Transuretral da Próstata , Obstrução do Colo da Bexiga Urinária , Masculino , Humanos , Estudos Prospectivos , Austrália , Neoplasias da Próstata/cirurgia , Lesões por Radiação/cirurgia , Obstrução do Colo da Bexiga Urinária/cirurgia , Hospitais , Braquiterapia/efeitos adversos
2.
Cell Rep ; 40(7): 111198, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977476

RESUMO

The relationship between nutrient starvation and mitochondrial dynamics is poorly understood. We find that cells facing amino acid starvation display clear mitochondrial fusion as a means to evade mitophagy. Surprisingly, further supplementation of glutamine (Q), leucine (L), and arginine (R) did not reverse, but produced stronger mitochondrial hyperfusion. Interestingly, the hyperfusion response to Q + L + R was dependent upon mitochondrial fusion proteins Mfn1 and Opa1 but was independent of MTORC1. Metabolite profiling indicates that Q + L + R addback replenishes amino acid and nucleotide pools. Inhibition of fumarate hydratase, glutaminolysis, or inosine monophosphate dehydrogenase all block Q + L + R-dependent mitochondrial hyperfusion, which suggests critical roles for the tricarboxylic acid (TCA) cycle and purine biosynthesis in this response. Metabolic tracer analyses further support the idea that supplemented Q promotes purine biosynthesis by serving as a donor of amine groups. We thus describe a metabolic mechanism for direct sensing of cellular amino acids to control mitochondrial fusion and cell fate.


Assuntos
Aminoácidos , Dinâmica Mitocondrial , Aminas/metabolismo , Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Purinas/metabolismo
4.
Toxicol Sci ; 176(1): 224-235, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298455

RESUMO

Integrating nonclinical in vitro, in silico, and in vivo datasets holistically can improve hazard characterization and risk assessment. In pharmaceutical development, cardiovascular liabilities are a leading cause of compound attrition. Prior to clinical studies, functional cardiovascular data are generated in single-dose safety pharmacology telemetry studies, with structural pathology data obtained from repeat-dose toxicology studies with limited concurrent functional endpoints, eg, electrocardiogram via jacketed telemetry. Relationships between datasets remain largely undetermined. To address this gap, a cross-pharma collaboration collated functional and structural data from 135 compounds. Retrospective functional data were collected from good laboratory practice conscious dog safety pharmacology studies: effects defined as hemodynamic blood pressure or heart rate changes. Morphologic pathology findings (mainly degeneration, vacuolation, inflammation) from related toxicology studies in the dog (3-91 days repeat-dosing) were reviewed, harmonized, and location categorized: cardiac muscle (myocardium, epicardium, endocardium, unspecified), atrioventricular/aortic valves, blood vessels. The prevalence of cardiovascular histopathology changes was 11.1% of compounds, with 53% recording a functional blood pressure or heart rate change. Correlations were assessed using the Mantel-Haenszel Chi-square trend test, identifying statistically significant associations between cardiac muscle pathology and (1) decreased blood pressure, (2) increased heart rate, and between cardiovascular vessel pathology and increased heart rate. Negative predictive values were high, suggesting few compounds cause repeat-dose cardiovascular structural change in the absence of functional effects in single-dose safety pharmacology studies. Therefore, observed functional changes could prompt moving (sub)chronic toxicology studies forward, to identify cardiovascular liabilities earlier in development, and reduce late-stage attrition.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Animais , Pressão Sanguínea , Cães , Avaliação Pré-Clínica de Medicamentos , Eletrocardiografia , Frequência Cardíaca , Hemodinâmica , Masculino , Estudos Retrospectivos , Telemetria
5.
Skelet Muscle ; 10(1): 5, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075690

RESUMO

BACKGROUND: Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11ß-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. METHODS: We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. RESULTS: H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD+/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability. CONCLUSIONS: These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.


Assuntos
Músculo Esquelético/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Retículo Sarcoplasmático/metabolismo , Acetilcoenzima A/metabolismo , Animais , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Compostos de Piridínio/metabolismo
6.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471022

RESUMO

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Sedimentos Geológicos/química , Poluentes Radioativos do Solo/química , Tennessee , Urânio/química
7.
Sci Rep ; 9(1): 8513, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186503

RESUMO

To maintain perceptual coherence, the brain corrects for discrepancies between the senses. If, for example, lights are consistently offset from sounds, representations of auditory space are remapped to reduce this error (spatial recalibration). While recalibration effects have been observed following both brief and prolonged periods of adaptation, the relative contribution of discrepancies occurring over these timescales is unknown. Here we show that distinct multisensory recalibration mechanisms operate in remote and recent history. To characterise the dynamics of this spatial recalibration, we adapted human participants to audio-visual discrepancies for different durations, from 32 to 256 seconds, and measured the aftereffects on perceived auditory location. Recalibration effects saturated rapidly but decayed slowly, suggesting a combination of transient and sustained adaptation mechanisms. When long-term adaptation to an audio-visual discrepancy was immediately followed by a brief period of de-adaptation to an opposing discrepancy, recalibration was initially cancelled but subsequently reappeared with further testing. These dynamics were best fit by a multiple-exponential model that monitored audio-visual discrepancies over distinct timescales. Recent and remote recalibration mechanisms enable the brain to balance rapid adaptive changes to transient discrepancies that should be quickly forgotten against slower adaptive changes to persistent discrepancies likely to be more permanent.


Assuntos
Percepção Auditiva/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adaptação Fisiológica , Adulto , Calibragem , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Estimulação Luminosa , Adulto Jovem
8.
ChemMedChem ; 14(6): 621-635, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30664325

RESUMO

In the search for effective and sustainable drugs for human African trypanosomiasis (HAT), we developed hybrid compounds by merging the structural features of quinone 4 (2-phenoxynaphthalene-1,4-dione) with those of phenolic constituents from cashew nut shell liquid (CNSL). CNSL is a waste product from cashew nut processing factories, with great potential as a source of drug precursors. The synthesized compounds were tested against Trypanosoma brucei brucei, including three multidrug-resistant strains, T. congolense, and a human cell line. The most potent activity was found against T. b. brucei, the causative agent of HAT. Shorter-chain derivatives 20 (2-(3-(8-hydroxyoctyl)phenoxy)-5-methoxynaphthalene-1,4-dione) and 22 (5-hydroxy-2-(3-(8-hydroxyoctyl)phenoxy)naphthalene-1,4-dione) were more active than 4, displaying rapid micromolar trypanocidal activity, and no human cytotoxicity. Preliminary studies probing their mode of action on trypanosomes showed ATP depletion, followed by mitochondrial membrane depolarization and mitochondrion ultrastructural damage. This was accompanied by reactive oxygen species production. We envisage that such compounds, obtained from a renewable and inexpensive material, might be promising bio-based sustainable hits for anti-trypanosomatid drug discovery.


Assuntos
Trifosfato de Adenosina/biossíntese , Anacardium/química , Descoberta de Drogas , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tripanossomicidas/química , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Humanos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/microbiologia
9.
Gastroenterology ; 156(5): 1354-1367.e6, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30550821

RESUMO

BACKGROUND & AIMS: Exclusive enteral nutrition (EEN) is the only established dietary treatment for Crohn's disease (CD), but its acceptability is limited. There is a need for novel dietary treatments for CD. METHODS: We evaluated the effects of an individualized food-based diet (CD-TREAT), with similar composition to EEN, on the gut microbiome, inflammation, and clinical response in a rat model, healthy adults, and children with relapsing CD. Twenty-five healthy adults randomly received EEN or CD-TREAT for 7 days, followed by a 14-day washout period, followed by the alternate diet. Fecal microbiome and metabolome were assessed before and after each diet. HLA-B7 and HLA-B27 transgenic rats with gut inflammation received EEN, CD-TREAT, or standard chow for 4 weeks. Fecal, luminal, and tissue microbiome, fecal metabolites, and gut inflammation were assessed. Five children with active CD activity received CD-TREAT and their clinical activity and calprotectin were evaluated after 8 weeks of treatment. RESULTS: For healthy adults, CD-TREAT was easier to comply with and more acceptable than EEN. CD-TREAT induced similar effects to EEN (EEN vs CD-TREAT) on fecal microbiome composition, metabolome, mean total sulfide (increase 133.0 ± 80.5 vs 54.3 ± 47.0 nmol/g), pH (increase 1.3 ± 0.5 vs 0.9 ± 0.6), and the short-chain fatty acids (µmol/g) acetate (decrease 27.4 ± 22.6 vs 21.6 ± 20.4), propionate (decrease 5.7 ± 7.8 vs 5.2 ± 7.9), and butyrate (decrease 7.0 ± 7.4 vs 10.2 ± 8.5). In the rat model, CD-TREAT and EEN produced similar changes in bacterial load (decrease 0.3 ± 0.3 log10 16S rRNA gene copies per gram), short-chain fatty acids, microbiome, and ileitis severity (mean histopathology score decreases of 1.25 for EEN [P = .015] and 1.0 for CD-TREAT [P = .044] vs chow). In children receiving CD-TREAT, 4 (80%) had a clinical response and 3 (60%) entered remission, with significant concurrent decreases in fecal calprotectin (mean decrease 918 ± 555 mg/kg; P = .002). CONCLUSION: CD-TREAT replicates EEN changes in the microbiome, decreases gut inflammation, is well tolerated, and is potentially effective in patients with active CD. ClinicalTrials.gov, numbers NCT02426567 and NCT03171246.


Assuntos
Bactérias/crescimento & desenvolvimento , Doença de Crohn/dietoterapia , Nutrição Enteral , Microbioma Gastrointestinal , Valor Nutritivo , Adolescente , Adulto , Animais , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carga Bacteriana , Criança , Doença de Crohn/diagnóstico , Doença de Crohn/microbiologia , Doença de Crohn/fisiopatologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Antígeno HLA-B27/genética , Antígeno HLA-B7/genética , Humanos , Masculino , Estado Nutricional , Ratos Transgênicos , Recidiva , Indução de Remissão , Escócia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
10.
J Invest Dermatol ; 139(1): 100-107, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030151

RESUMO

Biologic therapies have shown high efficacy in psoriasis, but individual response varies and is poorly understood. To inform biomarker discovery in the Psoriasis Stratification to Optimise Relevant Therapy (i.e., PSORT) study, we evaluated a comprehensive array of omics platforms across three time points and multiple tissues in a pilot investigation of 10 patients with severe psoriasis, treated with the tumor necrosis factor (TNF) inhibitor, etanercept. We used RNA sequencing to analyze mRNA and small RNA transcriptome in blood, lesional and nonlesional skin, and the SOMAscan platform to investigate the serum proteome. Using an integrative systems biology approach, we identified signals of treatment response in genes and pathways associated with TNF signaling, psoriasis pathology, and the major histocompatibility complex region. We found association between clinical response and TNF-regulated genes in blood and skin. Using a combination of differential expression testing, upstream regulator analysis, clustering techniques, and predictive modeling, we show that baseline samples are indicative of patient response to biologic therapies, including signals in blood, which have traditionally been considered unreliable for inference in dermatology. In conclusion, our pilot study provides both an analytical framework and empirical basis to estimate power for larger studies, specifically the ongoing PSORT study, which we show as powered for biomarker discovery and patient stratification.


Assuntos
Terapia Biológica/métodos , Etanercepte/uso terapêutico , Regulação da Expressão Gênica , Psoríase/tratamento farmacológico , RNA Mensageiro/genética , Adulto , Feminino , Seguimentos , Humanos , Imunossupressores/uso terapêutico , Masculino , Projetos Piloto , Prognóstico , Estudos Prospectivos , Psoríase/genética , Psoríase/metabolismo , Pele
11.
Metabolites ; 8(4)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467282

RESUMO

Metabolomic profiling using high resolution mass spectrometry with hydrophilic interaction chromatography was applied to 11 faecal extracts from eleven healthy children and to 43 faecal extracts from eleven children undergoing exclusive enteral nutrition for the treatment of active Crohn's disease (CD) at timepoints before, during (15, 30, and 60 days), and after treatment. Differences between the control and CD samples were identified at each timepoint. An orthogonal partial least square-discriminant analysis (OPLS-DA) model identified eight metabolites that were normally distributed according to Q-Q plots. The OPLS-DA model was able to discriminate the CD samples from the controls at every timepoint, but the model was not able to differentiate the CD samples from one another at the different timepoints during treatment with exclusive enteral nutrition. The differentiated metabolites identified in the CD samples included tyrosine, an ornithine isomer, arachidonic acid, eicosatrienoic acid, docosatetraenoic acid, a sphingomyelin, a ceramide, and dimethylsphinganine. Despite successful treatment, underlying differences remained in the metabolome of the CD patients. These differences dominated the separation of the samples when multivariate methods were applied.

12.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453264

RESUMO

A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota , Urânio/efeitos adversos , Biodegradação Ambiental , Água Subterrânea/química , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/química , Oxirredução , Tennessee
13.
mBio ; 9(1)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463661

RESUMO

Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.


Assuntos
Biota/efeitos dos fármacos , Ecossistema , Poluição Ambiental , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Concentração de Íons de Hidrogênio , Metagenoma/efeitos dos fármacos , Nitratos/análise , Tennessee , Urânio/análise
14.
J Altern Complement Med ; 24(6): 557-563, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29474095

RESUMO

OBJECTIVES: An important task facing hospitals is improving pain management without raising costs. Integrative medicine (IM), a promising nonpharmacologic pain management strategy, is yet to be examined for its cost implications in an inpatient setting. This institution has had an inpatient IM department for over a decade. The purpose was to examine the relationship between changes in patients' pain, as a result of receiving IM therapy, and total cost of care during an inpatient hospital admission. DESIGN: In this retrospective analysis, data from an EPIC-based electronic health record (EHR) patient demographics, length of stay (LOS), and All Patient Refined Diagnosis Related Groups (APR-DRG) severity of illness measures were utilized. IM practitioners collected and entered patient-reported pain scores into the EHR. The authors regressed the demographic, change in pain, LOS, and APR-DRG variables with changes in pain on total cost for the hospital admission. To estimate cost savings to the hospital, they computed the average reduction in cost associated with reduction in pain by multiplying the coefficient for change in pain by average total cost. SETTING/LOCATION: A large, tertiary care hospital in Minneapolis, MN. SUBJECTS: Adult inpatient admissions, 2730, during the study period where patients received IM for pain and met eligibility criteria. INTERVENTION: IM services provided to inpatients. OUTCOME MEASURES: Change in pain on an 11-point numeric rating scale before and after initial IM sessions; total costs for hospital admissions. RESULTS: Both LOS and age were found to increase cost, as did being white, male, married, and having APR-DRG severity coded as extreme. For patients receiving IM therapies, pain was reduced by an average of 2.05 points and this pain reduction was associated with a cost savings of $898 per hospital admission. CONCLUSIONS: For patients receiving IM therapies, pain was significantly reduced and costs were lowered by about 4%.


Assuntos
Redução de Custos/estatística & dados numéricos , Hospitalização/economia , Medicina Integrativa , Manejo da Dor/métodos , Adulto , Idoso , Registros Eletrônicos de Saúde , Feminino , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Minnesota/epidemiologia , Estudos Retrospectivos
15.
Sci Rep ; 7(1): 16093, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170469

RESUMO

True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother's metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.


Assuntos
Leite/química , Focas Verdadeiras/imunologia , Focas Verdadeiras/metabolismo , Adulto , Animais , Proteína C-Reativa/metabolismo , Colostro/química , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Desmame
17.
Exp Biol Med (Maywood) ; 242(16): 1559-1572, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29065799

RESUMO

Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.


Assuntos
Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Microfluídica/métodos , Engenharia Tecidual/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microfluídica/instrumentação
18.
Exp Biol Med (Maywood) ; 242(16): 1579-1585, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28622731

RESUMO

Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation smooth and rapid. With the collective contributions from multiple international pharmaceutical companies and partners at National Institutes of Health, this article should serve as an invaluable resource to the multi-disciplinary field of TC development.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Procedimentos Analíticos em Microchip/métodos , Microfluídica/métodos , Indústria Farmacêutica , Humanos , Dispositivos Lab-On-A-Chip
19.
Sci Rep ; 6: 36141, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808224

RESUMO

Among the large placental mammals, ursids give birth to the most altricial neonates with the lowest neonatal:maternal body mass ratios. This is particularly exemplified by giant pandas. To examine whether there is compensation for the provision of developmentally important nutrients that other species groups may provide in utero, we examined changes in the lipids of colostrum and milk with time after birth in giant pandas. Lipids that are developmental signals or signal precursors, and those that are fundamental to nervous system construction, such as docosahexaenoic acid (DHA) and phosphatidylserines, appear early and then fall dramatically in concentration to a baseline at 20-30 days. The dynamics of lysophosphatidic acid and eicosanoids display similar patterns, but with progressive differences between mothers. Triglycerides occur at relatively low levels initially and increase in concentration until a plateau is reached at about 30 days. These patterns indicate an early provision of signalling lipids and their precursors, particularly lipids crucial to brain, retinal and central nervous system development, followed by a changeover to lipids for energy metabolism. Thus, in giant pandas, and possibly in all bears, lactation is adapted to provisioning a highly altricial neonate to a degree that suggests equivalence to an extension of gestation.


Assuntos
Colostro/metabolismo , Metabolismo Energético , Lipídeos/química , Leite/metabolismo , Transdução de Sinais , Ursidae/metabolismo , Animais , Análise Discriminante , Lactação , Análise dos Mínimos Quadrados , Fatores de Tempo
20.
PLoS One ; 11(5): e0155355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195790

RESUMO

Extracts from twelve samples of propolis collected from different regions of Libya were tested for their activity against Trypanosoma brucei, Leishmania donovani, Plasmodium falciparum, Crithidia fasciculata and Mycobacterium marinum and the cytotoxicity of the extracts was tested against mammalian cells. All the extracts were active to some degree against all of the protozoa and the mycobacterium, exhibiting a range of EC50 values between 1.65 and 53.6 µg/ml. The toxicity against mammalian cell lines was only moderate; the most active extract against the protozoan species, P2, displayed an IC50 value of 53.2 µg/ml. The extracts were profiled by using liquid chromatography coupled to high resolution mass spectrometry. The data sets were extracted using m/z Mine and the accurate masses of the features extracted were searched against the Dictionary of Natural Products (DNP). A principal component analysis (PCA) model was constructed which, in combination with hierarchical cluster analysis (HCA), divided the samples into five groups. The outlying groups had different sets of dominant compounds in the extracts, which could be characterised by their elemental composition. Orthogonal partial least squares (OPLS) analysis was used to link the activity of each extract against the different micro-organisms to particular components in the extracts.


Assuntos
Anti-Infecciosos/química , Antiprotozoários/química , Testes de Sensibilidade Microbiana , Própole/química , Animais , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Produtos Biológicos/química , Cromatografia Líquida , Análise por Conglomerados , Crithidia fasciculata/efeitos dos fármacos , Feminino , Geografia , Humanos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Leishmania donovani/efeitos dos fármacos , Líbia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium marinum/efeitos dos fármacos , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Análise de Componente Principal , Própole/farmacologia , Software , Trypanosoma brucei brucei/efeitos dos fármacos , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA