Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Sci ; 29(3): 711-722, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811683

RESUMO

Galactarate dehydratase (GarD) is the first enzyme in the galactarate/glucarate pathway and catalyzes the dehydration of galactarate to 3-keto-5-dehydroxygalactarate. This protein is known to increase colonization fitness of intestinal pathogens in antibiotic-treated mice and to promote bacterial survival during stress. The galactarate/glucarate pathway is widespread in bacteria, but not in humans, and thus could be a target to develop new inhibitors for use in combination therapy to combat antibiotic resistance. The structure of almost all the enzymes of the galactarate/glucarate pathway were solved previously, except for GarD, for which only the structure of the N-terminal domain was determined previously. Herein, we report the first crystal structure of full-length GarD solved using a seleno-methoionine derivative revealing a new protein fold. The protein consists of three domains, each presenting a novel twist as compared to their distant homologs. GarD in the crystal structure forms dimers and each monomer consists of three domains. The N-terminal domain is comprised of a ß-clip fold, connected to the second domain by a long unstructured linker. The second domain serves as a dimerization interface between two monomers. The C-terminal domain forms an unusual variant of a Rossmann fold with a crossover and is built around a seven-stranded parallel ß-sheet supported by nine α-helices. A metal binding site in the C-terminal domain is occupied by Ca2+ . The activity of GarD was corroborated by the production of 5-keto-4-deoxy-D-glucarate under reducing conditions and in the presence of iron. Thus, GarD is an unusual enolase with a novel protein fold never previously seen in this class of enzymes.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Hidroliases/química , Fosfopiruvato Hidratase/química , Cristalografia por Raios X , Hidroliases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Fosfopiruvato Hidratase/metabolismo , Dobramento de Proteína/efeitos dos fármacos
2.
Mol Microbiol ; 107(2): 249-264, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29139580

RESUMO

Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate-producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch-degrading α-amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ∼40-fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.


Assuntos
Parede Celular/enzimologia , Eubacterium/enzimologia , Intestinos/microbiologia , Amido/metabolismo , alfa-Amilases/metabolismo , Metabolismo dos Carboidratos/genética , Eubacterium/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Conformação Molecular , Mutação , Solanum tuberosum/microbiologia , Zea mays/microbiologia , alfa-Amilases/genética
3.
Biochemistry ; 44(34): 11315-22, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16114868

RESUMO

To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter. Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Luteovirus/genética , RNA Viral/genética , Sequência de Bases , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/química , Solanum tuberosum/virologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA