Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3207-3224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37732569

RESUMO

The sponge microbiome underpins host function through provision and recycling of essential nutrients in a nutrient poor environment. Genomic data suggest that carbohydrate degradation, carbon fixation, nitrogen metabolism, sulphur metabolism and supplementation of B-vitamins are central microbial functions. However, validation beyond the genomic potential of sponge symbiont pathways is rarely explored. To evaluate metagenomic predictions, we sequenced the metagenomes and metatranscriptomes of three common coral reef sponges: Ircinia ramosa, Ircinia microconulosa and Phyllospongia foliascens. Multiple carbohydrate active enzymes were expressed by Poribacteria, Bacteroidota and Cyanobacteria symbionts, suggesting these lineages have a central role in assimilating dissolved organic matter. Expression of entire pathways for carbon fixation and multiple sulphur compound transformations were observed in all sponges. Gene expression for anaerobic nitrogen metabolism (denitrification and nitrate reduction) were more common than aerobic metabolism (nitrification), where only the I. ramosa microbiome expressed the nitrification pathway. Finally, while expression of the biosynthetic pathways for B-vitamins was common, the expression of additional transporter genes was far more limited. Overall, we highlight consistencies and disparities between metagenomic and metatranscriptomic results when inferring microbial activity, while uncovering new microbial taxa that contribute to the health of their sponge host via nutrient exchange.


Assuntos
Cianobactérias , Microbiota , Poríferos , Animais , Filogenia , Cianobactérias/genética , Microbiota/genética , Vitaminas/metabolismo , Carboidratos , Simbiose
2.
Sci Rep ; 6: 21153, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892387

RESUMO

Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 µg l(-1), similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 µg l(-1) TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.


Assuntos
Antozoários/efeitos dos fármacos , Petróleo/toxicidade , Animais , Antozoários/fisiologia , Antozoários/efeitos da radiação , Recifes de Corais , Ecotoxicologia , Larva , Metamorfose Biológica , Naftalenos/toxicidade , Poluição por Petróleo , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água
3.
PLoS One ; 7(1): e30386, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22295083

RESUMO

In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.


Assuntos
Cnidários/química , Recifes de Corais , Ecossistema , Neuropeptídeos/farmacologia , Poríferos/efeitos dos fármacos , Poríferos/crescimento & desenvolvimento , Rodófitas/fisiologia , Amidas/química , Animais , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Metamorfose Biológica/efeitos dos fármacos , Neuropeptídeos/química , Extratos Vegetais/farmacologia , Rodófitas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA