Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539831

RESUMO

Numerous underexplored plant species are believed to possess considerable potential in combating oxidative stress and its associated health impacts, emphasizing the need for a comprehensive methodological screening approach to assess their antioxidant capacity. This study investigated 375 plant extracts, utilizing both cell-free and cellular methods to evaluate their antioxidant properties. Target-based antioxidant capacity was evaluated by the total phenolic content (TPC) and ferric reducing antioxidant power (FRAP) assays. Cell-based assays employed the H2DCF-DA probe to measure reactive oxygen species (ROS) levels and the Griess assay to quantify nitric oxide (NO) levels in stressed Caco-2 and RAW264.7 cells, respectively. The highest TPC and FRAP values were found in extracts of Origanum vulgare and Fragaria × ananassa leaves. Several plant extracts significantly reduced stress-induced ROS or NO levels by at least 30%. Distinctive selectivity was noted in certain extracts, favoring the significant reduction of NO (e.g., Helianthus tuberosus extract), of ROS (e.g., Prunus domestica subsp. Syriaca extract), or of both (e.g., Fragaria × ananassa leaf extract). A strong correlation between TPC and FRAP values and moderate correlations between the results of the cell-free and cell-based assays were evident. These findings highlight the great antioxidant potential of underexplored plant extracts and the diversity of the underlying mechanisms, emphasizing the importance of a multifaceted approach for a comprehensive assessment.

2.
Sci Rep ; 14(1): 3547, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347122

RESUMO

Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.


Assuntos
Aterosclerose , Extratos Vegetais , Sambucus nigra , Sambucus , Humanos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Lipogênese , Colesterol/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
3.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234864

RESUMO

Lignans are known to exhibit a broad spectrum of biological activities, indicating their potential as constituents of feed supplements. This study investigated two extracts derived from the feed supplements 'ROI' and 'Protect'-which contain the wood lignans magnolol and honokiol ('ROI'), or soluble tannins additional to the aforementioned lignans ('Protect')-and their impact on selected parameters of intestinal functionality. The antioxidant and anti-inflammatory properties of the extracts were determined by measuring their effects on reactive oxygen species (ROS) and pro-inflammatory cytokine production in vitro. The impact on intestinal barrier integrity was evaluated in Caco-2 cells and Drosophila melanogaster by examining leaky gut formation. Furthermore, a feeding trial using infected piglets was conducted to study the impact on the levels of superoxide dismutase, glutathione and lipid peroxidation. The Protect extract lowered ROS production in Caco-2 cells and reversed the stress-induced weakening of barrier integrity. The ROI extract inhibited the expression or secretion of interleukin-8 (IL-8), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNFα). Moreover, the ROI extract decreased leaky gut formation and mortality rates in Drosophila melanogaster. Dietary supplementation with Protect improved the antioxidant status and barrier integrity of the intestines of infected piglets. In conclusion, wood lignan-enriched feed supplements are valuable tools that support intestinal health by exerting antioxidant, anti-inflammatory and barrier-strengthening effects.


Assuntos
Interleucina-8 , Lignanas , Ração Animal/análise , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Células CACO-2 , Suplementos Nutricionais , Drosophila melanogaster/metabolismo , Glutationa , Humanos , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Suínos , Taninos , Fator de Necrose Tumoral alfa/metabolismo , Madeira/metabolismo
4.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290641

RESUMO

Intestinal absorption is intrinsically low for lipophilic micronutrients and phytochemicals. Plant extracts acting as bioavailability enhancers can complement for this deficiency by modulation of both, physicochemical and biochemical parameters, in the absorption process. However, these interactions often are limited to specific conditions and the mechanisms and potential synergisms are poorly understood. In this work, we used a human intestinal cell line to characterize the impact of extracts from C. longa (curcuma), Z. officinale (ginger) and P.nigrum (black pepper) on uptake and transport rates of the xanthophylls lutein and zeaxanthin as well as soy isoflavones measured by HPLC-DAD. We found a significant increase in the uptake of lutein in the presence of curcuma extract and enhanced isoflavone transport rates mediated by curcuma and ginger extracts. Combinations of the plant extracts did not lead to any additional increase in uptake or transport rates. By investigation of mixed micelle incorporation efficiency, we could dismiss changes in bioaccessibility as a potential enhancing mechanism in our experimental setup. We further conducted a rhodamine 123 efflux assay and discovered inhibition of P-glycoproteins by the ginger and black pepper extracts, highlighting a plausible route of action leading to increased isoflavone bioavailability.

5.
Mol Nutr Food Res ; 66(12): e2101133, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426970

RESUMO

SCOPE: Sea buckthorn (Hippophaes rhamnoides) is capable of ameliorating disturbed glucose metabolism in animal models and human subjects. Here, the effect of sea buckthorn oil as well as of extracts of fruits, leaves, and press cake on postprandial glucose metabolism is systematically investigated. METHODS AND RESULTS: Sea buckthorn did neither exert decisive effects in an in vitro model of intestinal glucose absorption nor did it alter insulin secretion. However, sea buckthorn stimulates GLUT4 translocation to the plasma membrane comparable to insulin, indicative of increased glucose clearance from the circulation. Isorhamnetin is identified in all sea buckthorn samples investigated and is biologically active in triggering GLUT4 cell surface localization. Consistently, sea buckthorn products lower circulating glucose by ≈10% in a chick embryo model. Moreover, sea buckthorn products fully revert hyperglycemia in the nematode Caenorhabditis elegans while they are ineffective in Drosophila melanogaster under euglycemic conditions. CONCLUSION: These data indicate that edible sea buckthorn products as well as by-products are promising resources for hypoglycemic nutrient supplements that increase cellular glucose clearance into target tissues.


Assuntos
Hippophae , Animais , Embrião de Galinha , Drosophila melanogaster , Frutas , Glucose , Humanos , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas
6.
Food Funct ; 12(21): 10432-10442, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617546

RESUMO

Decreasing circulating low-density lipoprotein (LDL) cholesterol levels leads to decreased risk of cardiovascular diseases. Natural compounds are capable of lowering LDL-cholesterol even on top of lifestyle modification or medication. To identify novel plant-derived compounds to lower plasma LDL cholesterol levels, we performed high-content screening based on the transcriptional activation of the promoter of the LDL receptor (LDLR). The identified hits were thoroughly validated in human hepatic cell lines in terms of increasing LDLR mRNA and protein levels, lowering cellular cholesterol levels and increasing cellular LDL uptake. By means of this incremental validation process in vitro, aqueous extracts prepared from leaves of lingonberries (Vaccinium vitis-idaea) as well as blackberries (Rubus fruticosus) were found to have effects comparable to lovastatin, a prototypic cholesterol-lowering drug. When applied in vivo in mice, both extracts induced subtle increases in hepatic LDLR expression. In addition, a significant increase in high-density lipoprotein (HDL) cholesterol was observed. Taken together, aqueous extracts from lingonberry or blackberry leaves were identified and characterized as strong candidates to provide cardiovascular protection.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Rubus/metabolismo , Vaccinium vitis-Idaea/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
7.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451906

RESUMO

Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 ß cells, an insulin-Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion.

8.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299620

RESUMO

Type 2 diabetes mellitus (T2DM) is linked to insulin resistance and a loss of insulin sensitivity, leading to millions of deaths worldwide each year. T2DM is caused by reduced uptake of glucose facilitated by glucose transporter 4 (GLUT4) in muscle and adipose tissue due to decreased intracellular translocation of GLUT4-containing vesicles to the plasma membrane. To treat T2DM, novel medications are required. Through a fluorescence microscopy-based high-content screen, we tested more than 600 plant extracts for their potential to induce GLUT4 translocation in the absence of insulin. The primary screen in CHO-K1 cells resulted in 30 positive hits, which were further investigated in HeLa and 3T3-L1 cells. In addition, full plasma membrane insertion was examined by immunostaining of the first extracellular loop of GLUT4. The application of appropriate inhibitors identified PI3 kinase as the most important signal transduction target relevant for GLUT4 translocation. Finally, from the most effective hits in vitro, four extracts effectively reduced blood glucose levels in chicken embryos (in ovo), indicating their applicability as antidiabetic pharmaceuticals or nutraceuticals.


Assuntos
Glicemia/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetulus , Diabetes Mellitus Tipo 2 , Transportador de Glucose Tipo 4/metabolismo , Células HeLa , Humanos , Resistência à Insulina/fisiologia , Camundongos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Adv Sci (Weinh) ; 8(11): e2004856, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34105271

RESUMO

Physiological-relevant in vitro tissue models with their promise of better predictability have the potential to improve drug screening outcomes in preclinical studies. Despite the advances of spheroid models in pharmaceutical screening applications, variations in spheroid size and consequential altered cell responses often lead to nonreproducible and unpredictable results. Here, a microfluidic multisize spheroid array is established and characterized using liver, lung, colon, and skin cells as well as a triple-culture model of the blood-brain barrier (BBB) to assess the effects of spheroid size on (a) anticancer drug toxicity and (b) compound penetration across an advanced BBB model. The reproducible on-chip generation of 360 spheroids of five dimensions on a well-plate format using an integrated microlens technology is demonstrated. While spheroid size-related IC50 values vary up to 160% using the anticancer drugs cisplatin (CIS) or doxorubicin (DOX), reduced CIS:DOX drug dose combinations eliminate all lung microtumors independent of their sizes. A further application includes optimizing cell seeding ratios and size-dependent compound uptake studies in a perfused BBB model. Generally, smaller BBB-spheroids reveal an 80% higher compound penetration than larger spheroids while verifying the BBB opening effect of mannitol and a spheroid size-related modulation on paracellular transport properties.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Técnicas Analíticas Microfluídicas , Neoplasias/patologia
10.
Front Pharmacol ; 12: 794404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975489

RESUMO

Medicinal plant extracts are becoming increasingly important as an alternative for traditional drugs against diabetes mellitus (DM). For this reason, we initialized a target-based screening of 111 root extracts from an open access plant extract library (PECKISH) by ascertaining their in-vitro inhibitory efficacy on α-glucosidase. The two most active extracts Geum urbanum L. (roseroot) and Rhodiola rosea L. (avens root) were further tested for their antidiabetic activities in terms of their impact on different regulatory key points of glucose homeostasis. To this end, various enzyme- and cell culture-based in-vitro assays were employed including the determination of sodium-dependent glucose transporter 1 (SGLT1) activity in Caco-2 monolayers by Ussing chambers and of glucose transporter 4 (GLUT4) translocation in a GFP-reporter cell line. Subsequently, the antidiabetic potential of the root extracts were further evaluated in in-vivo models, namely hen's eggs test and the fruit fly Drosophila melanogaster. Avens root extract was found to be a more potent inhibitor of the enzymes α-glucosidase and dipeptidyl peptidase-4 (DPP4) than roseroot extract. Most importantly, only avens root extract exhibited antidiabetic activity in the two in-vivo models eliciting a reduced blood glucose level in the in-ovo model and a decline of the triglyceride level in a dietary starch-induced D. melanogaster obesity model. Analyses of the polyphenolic composition of the avens root extract by HPLC revealed a high content of ellagic acid and its derivatives as well as ellagitannins such as pedunculagin, stenophyllanin, stachyurin, casuarinin and gemin A. In conclusion, avens root extract represents a promising medicinal plant that should be considered in further in-vivo studies on hyperglycemia in laboratory rodents and humans.

11.
Biomolecules ; 10(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756359

RESUMO

Recently, the application of herbal medicine for the prevention and treatment of diseases has gained increasing attention. Essential oils (EOs) are generally known to exert various pharmacological effects, such as antiallergic, anticancer, anti-inflammatory, and immunomodulatory effects. Current literature involving in vitro and in vivo studies indicates the potential of various herbal essential oils as suitable immunomodulators for the alternative treatment of infectious or immune diseases. This review highlights the cellular effects induced by EOs, as well as the molecular impacts of EOs on cytokines, immunoglobulins, or regulatory pathways. The results reviewed in this article revealed a significant reduction in relevant proinflammatory cytokines, as well as induction of anti-inflammatory markers. Remarkably, very little clinical study data involving the immunomodulatory effects of EOs are available. Furthermore, several studies led to contradictory results, emphasizing the need for a multiapproach system to better characterize EOs. While immunomodulatory effects were reported, the toxic potential of EOs must be clearly considered in order to secure future applications.


Assuntos
Fatores Imunológicos/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Óleos Voláteis/uso terapêutico , Fitoterapia/métodos , Óleos de Plantas/uso terapêutico
12.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075045

RESUMO

Climatic changes and heat stress have become a great challenge in the livestock industry, negatively affecting, in particular, poultry feed intake and intestinal barrier malfunction. Recently, phytogenic feed additives were applied to reduce heat stress effects on animal farming. Here, we investigated the effects of ginseng extract using various in vitro and in vivo experiments. Quantitative real-time PCR, transepithelial electrical resistance measurements and survival assays under heat stress conditions were carried out in various model systems, including Caco-2 cells, Caenorhabditis elegans and jejunum samples of broilers. Under heat stress conditions, ginseng treatment lowered the expression of HSPA1A (Caco-2) and the heat shock protein genes hsp-1 and hsp-16.2 (both in C. elegans), while all three of the tested genes encoding tight junction proteins, CLDN3, OCLN and CLDN1 (Caco-2), were upregulated. In addition, we observed prolonged survival under heat stress in Caenorhabditis elegans, and a better performance of growing ginseng-fed broilers by the increased gene expression of selected heat shock and tight junction proteins. The presence of ginseng extract resulted in a reduced decrease in transepithelial resistance under heat shock conditions. Finally, LC-MS analysis was performed to quantitate the most prominent ginsenosides in the extract used for this study, being Re, Rg1, Rc, Rb2 and Rd. In conclusion, ginseng extract was found to be a suitable feed additive in animal nutrition to reduce the negative physiological effects caused by heat stress.


Assuntos
Transtornos de Estresse por Calor/tratamento farmacológico , Resposta ao Choque Térmico/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Animais , Células CACO-2 , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Galinhas , Claudina-1/genética , Claudina-3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/patologia , Resposta ao Choque Térmico/genética , Humanos , Jejuno/efeitos dos fármacos , Jejuno/patologia , Panax/classificação , Extratos Vegetais/química
13.
Nutrients ; 12(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948089

RESUMO

The transport of hydrophobic compounds to recipient cells is a critical step in nutrient supplementation. Here, we tested the effect of phospholipid-based emulsification on the uptake of hydrophobic compounds into various tissue culture cell lines. In particular, the uptake of ω-3 fatty acids from micellar or nonmicellar algae oil into cell models for enterocytes, epithelial cells, and adipocytes was tested. Micellization of algae oil did not result in adverse effects on cell viability in the target cells. In general, both micellar and nonmicellar oil increased intracellular docosahexaenoic acid (DHA) levels. However, micellar oil was more effective in terms of augmenting the intracellular levels of total polyunsaturated fatty acids (PUFAs) than nonmicellar oil. These effects were rather conserved throughout the cells tested, indicating that fatty acids from micellar oils are enriched by mechanisms independent of lipases or lipid transporters. Importantly, the positive effect of emulsification was not restricted to the uptake of fatty acids. Instead, the uptake of phytosterols from phytogenic oils into target cells also increased after micellization. Taken together, phospholipid-based emulsification is a straightforward, effective, and safe approach to delivering hydrophobic nutrients, such as fatty acids or phytosterols, to a variety of cell types in vitro. It is proposed that this method of emulsification is suitable for the effective supplementation of numerous hydrophobic nutrients.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fitosteróis/metabolismo , Óleos de Plantas/farmacologia , Estramenópilas/química , Adipócitos/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Enterócitos/metabolismo , Células Epiteliais/metabolismo , Humanos , Micelas , Regulação para Cima
14.
Sci Rep ; 9(1): 10492, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324860

RESUMO

An increase in adipose tissue is caused by the increased size and number of adipocytes. Lipids accumulate in intracellular stores, known as lipid droplets (LDs). Recent studies suggest that parameters such as LD size, shape and dynamics are closely related to the development of obesity. Berberine (BBR), a natural plant alkaloid, has been demonstrated to possess anti-obesity effects. However, it remains unknown which cellular processes are affected by this compound or how effective herbal extracts containing BBR and other alkaloids actually are. For this study, we used extracts of Coptis chinensis, Mahonia aquifolium, Berberis vulgaris and Chelidonium majus containing BBR and other alkaloids and studied various processes related to adipocyte functionality. The presence of extracts resulted in reduced adipocyte differentiation, as well as neutral lipid content and rate of lipolysis. We observed that the intracellular fatty acid exchange was reduced in different LD size fractions upon treatment with BBR and Coptis chinensis. In addition, LD motility was decreased upon incubation with BBR, Coptis chinensis and Chelidonium majus extracts. Furthermore, Chelidonium majus was identified as a potent fatty acid uptake inhibitor. This is the first study that demonstrates the selected regulatory effects of herbal extracts on adipocyte function.


Assuntos
Adipócitos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Hipolipemiantes/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Extratos Vegetais/farmacologia , Adipócitos/química , Berberina/farmacologia , Berberis/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Chelidonium/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Coptis/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lipídeos/análise , Mahonia/química
15.
Nutrients ; 11(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277259

RESUMO

Inhibition of intestinal glucose resorption can serve as an effective strategy for the prevention of an increase in blood glucose levels. We have recently shown that various extracts prepared from guava (Psidium guajava) inhibit sodium-dependent glucose cotransporter 1 (SGLT1)- and glucose transporter 2 (GLUT2)-mediated glucose transport in vitro (Caco-2 cells) and in vivo (C57BL/6N mice). However, the efficacy in humans remains to be confirmed. For this purpose, we conducted a parallelized, randomized clinical study with young healthy adults. Thirty-one volunteers performed an oral glucose tolerance test (OGTT) in which the control group received a glucose solution and the intervention group received a glucose solution containing a guava fruit extract prepared by supercritical CO2 extraction. The exact same extract was used for our previous in vitro and in vivo experiments. Blood samples were collected prior to and up to two hours after glucose consumption to quantitate blood glucose and insulin levels. Our results show that, in comparison to the control group, consumption of guava fruit extract resulted in a significantly reduced increase in postprandial glucose response over the basal fasting plasma glucose levels after 30 min (Δ control 2.60 ± 1.09 mmol/L versus Δ intervention 1.96 ± 0.96 mmol/L; p = 0.039) and 90 min (Δ control 0.44 ± 0.74 mmol/L versus Δ intervention -0.18 ± 0.88 mmol/L; p = 0.023). In addition, we observed a slightly reduced, but non-significant insulin secretion (Δ control 353.82 ± 183.31 pmol/L versus Δ intervention 288.43 ± 126.19 pmol/L, p = 0.302). Interestingly, storage time and repeated freeze-thawing operations appeared to negatively influence the efficacy of the applied extract. Several analytical methods (HPLC-MS, GC-MS, and NMR) were applied to identify putative bioactive compounds in the CO2 extract used. We could assign several substances at relevant concentrations including kojic acid (0.33 mg/mL) and 5-hydroxymethylfurfural (2.76 mg/mL). Taken together, this clinical trial and previous in vitro and in vivo experiments confirm the efficacy of our guava fruit extract in inhibiting intestinal glucose resorption, possibly in combination with reduced insulin secretion. Based on these findings, the development of food supplements or functional foods containing this extract appears promising for patients with diabetes and for the prevention of insulin resistance. Trial registration: 415-E/2319/15-2018 (Ethics Commissions of Salzburg).


Assuntos
Glicemia/efeitos dos fármacos , Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Manipulação de Alimentos/métodos , Frutas , Hipoglicemiantes/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Reabsorção Intestinal/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Psidium , Biomarcadores/sangue , Glicemia/metabolismo , Método Duplo-Cego , Feminino , Frutas/química , Humanos , Hipoglicemiantes/isolamento & purificação , Mucosa Intestinal/metabolismo , Masculino , Extratos Vegetais/isolamento & purificação , Período Pós-Prandial , Psidium/química , Fatores de Tempo
16.
Molecules ; 23(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314325

RESUMO

Diabetes mellitus (DM) and consequential cardiovascular diseases lead to millions of deaths worldwide each year; 90% of all people suffering from DM are classified as Type 2 DM (T2DM) patients. T2DM is linked to insulin resistance and a loss of insulin sensitivity. It leads to a reduced uptake of glucose mediated by glucose transporter 4 (GLUT4) in muscle and adipose tissue, and finally hyperglycemia. Using a fluorescence microscopy-based screening assay we searched for herbal extracts that induce GLUT4 translocation in the absence of insulin, and confirmed their activity in chick embryos. We found that extracts prepared from Bellis perennis (common daisy) are efficient inducers of GLUT4 translocation in the applied in vitro cell system. In addition, these extracts also led to reduced blood glucose levels in chicken embryos (in ovo), confirming their activity in a living organism. Using high-performance liquid chromtaography (HPLC) analysis, we identified and quantified numerous polyphenolic compounds including apigenin glycosides, quercitrin and chlorogenic acid, which potentially contribute to the induction of GLUT4 translocation. In conclusion, Bellis perennis extracts reduce blood glucose levels and are therefore suitable candidates for application in food supplements for the prevention and accompanying therapy of T2DM.


Assuntos
Asteraceae/química , Mimetismo Biológico , Insulina/farmacologia , Extratos Vegetais/farmacologia , Animais , Transporte Biológico , Glicemia/efeitos dos fármacos , Células CHO , Embrião de Galinha , Cromatografia Líquida de Alta Pressão , Cricetulus , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/química , Extratos Vegetais/química , Transporte Proteico
17.
Mol Nutr Food Res ; 62(11): e1701012, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29688623

RESUMO

SCOPE: Known pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases. METHODS AND RESULTS: This study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose- and time-dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco-2 cells. Using sodium-containing (both glucose transporters, sodium-dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium-free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time-dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC-MS. CONCLUSION: The data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.


Assuntos
Glucose/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Psidium/química , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Feminino , Frutas/química , Glucose/farmacocinética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/análise , Período Pós-Prandial , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
18.
PLoS One ; 12(8): e0182788, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28777818

RESUMO

Insulin resistance and ß cell failure are the main causes of elevated blood glucose levels in Type 2 diabetes mellitus (T2DM), a complex and multifactorial metabolic disease. Several medications to treat or reduce the symptoms of T2DM are used, including the injection of insulin and the application of insulin sensitizing or glucose production reducing drugs. Furthermore, the use of phytochemicals has attracted increasing attention for the therapy and prevention of T2DM. In order to identify and characterize antidiabetic compounds, efficient test systems are required. Here we present a modified chick embryo model (hens egg test, HET), which has originally been developed to determine the potential irritancy of chemicals, as a versatile tool for the characterization of phytochemicals with antidiabetic properties. We termed this modified assay variation Gluc-HET. More precisely, we determined the influence of variations in the incubation time of the fertilized eggs and studied the effects of different buffer parameters, such as the temperature, composition and volume, used for drug application. In addition, we tested several putative antidiabetic plant extracts, which have been identified in an in-vitro primary screening procedure, for their effectiveness in reducing blood glucose levels in-ovo. Taken together, our Gluc-HET model has proven to be a reliable and manageable system for the characterization of antidiabetic compounds.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/análise , Embrião de Galinha , Galinhas , Feminino
19.
J Agric Food Chem ; 65(32): 6821-6830, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28722406

RESUMO

Phytogenic feed additives represent a potential alternative to antibiotics with attributed health and growth-promoting effects. Chickens supplemented with an essential oil blend, a Quillaja saponin blend, or a combination of both phytogenic preparations showed a comprehensively and significantly improved apparent ileal digestibility of crude protein and amino acids compared to control birds. Accordingly, holistic transcriptomic analyses of jejunum and liver samples indicated alterations of macromolecule transporters and processing pathways likely culminating in an increased uptake and metabolizing of carbohydrates and fatty acids. Complementary analyses in Caco-2 showed a significant increase in transporter recruitment to the membrane (SGLT1 and PEPT1) after addition of essential oils and saponins. Although the penetrance of effects differed for the used phytogenic feed additives, the results indicate for an overlapping mode of action including local effects at the intestinal border and systemic alterations of macronutrient metabolism resulting in an improved performance of broilers.


Assuntos
Ração Animal/análise , Galinhas/metabolismo , Aditivos Alimentares/metabolismo , Íleo/metabolismo , Illicium/química , Óleos Voláteis/metabolismo , Origanum/metabolismo , Rosmarinus/metabolismo , Saponinas/metabolismo , Thymus (Planta)/metabolismo , Animais , Células CACO-2 , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Digestão , Humanos , Óleos Voláteis/análise , Origanum/química , Proteínas/genética , Proteínas/metabolismo , Rosmarinus/química , Saponinas/análise , Thymus (Planta)/química
20.
Nitric Oxide ; 60: 10-15, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27593618

RESUMO

BACKGROUND: Dietary inorganic nitrate (NO3-) and its reduced forms nitrite (NO2-) and nitric oxide (NO), respectively, are of critical importance for host defense in the oral cavity. High concentrations of salivary nitrate are linked to a lower prevalence of caries due to growth inhibition of cariogenic bacteria. OBJECTIVE: In-vitro studies suggest that the formation of antimicrobial NO results in an increase of the pH preventing erosion of tooth enamel. The purpose of this study was to prove this effect in-vivo. METHODS: In a randomized clinical study with 46 subjects we investigated whether NO3- rich beetroot juice exhibits a protective effect against caries by an increase of salivary pH. RESULTS: Our results show that, in comparison to a placebo group, consumption of beetroot juice that contains 4000 mg/L NO3- results in elevated levels of salivary NO2-, nitrite NO3-, and NO. Furthermore, we determined an increase of the mean pH of saliva from 7.0 to 7.5, confirming the anti-cariogenic effect of the used NO3--rich beetroot juice. CONCLUSIONS: Taken together, we have found that NO3--rich beetroot juice holds potential effects against dental caries by preventing acidification of human saliva. TRIAL REGISTRATION: C-87-15 (Ethics Commissions of Upper Austria).


Assuntos
Beta vulgaris , Sucos de Frutas e Vegetais , Boca/efeitos dos fármacos , Nitratos/farmacologia , Nitritos , Saliva/química , Administração Oral , Adulto , Cárie Dentária , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Nitratos/administração & dosagem , Nitritos/análise , Nitritos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA