Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 170: 503-513, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383079

RESUMO

Glutathione peroxidase 1 (GPx1) is an important antioxidant selenium enzyme and has a good prospect for drug development. However, the expression of GPx1 requires a complex expression mechanism, which makes the drug development of recombinant GPx1 (rGPx1) difficult. In the previous study, we expressed highly active rhGPx1 in amber-less Escherichia coli by using a novel chimeric tRNAUTuT6. However, the antioxidant effect of rhGPx1 at the cellular and animal levels has not been verified. In this study, we established isoproterenol (ISO)-induced oxidative stress injury models to study the antioxidant effect of rhGPx1 at the cellular and animal levels. Meanwhile, in order to more accurately reflect the antioxidant effect of rGPx1 in mice, we used the same method to express recombinant mouse GPx1 (rmGPx1) as a control for rhGPx1. The results of a study showed that rhGPx1 has a good antioxidant effect at the cellular and animal levels. However, due to species differences, rhGPx1 had immunogenicity in mice and antibodies of rhGPx1 could inhibit its antioxidant activity, so the antioxidant effect of rhGPx1 was not as good as rmGPx1 in mice. Nevertheless, this study provides a reliable theoretical basis for the development of rhGPx1 as an antioxidant drug.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Animais , Linhagem Celular , Escherichia coli/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Ratos , Selênio/metabolismo , Selênio/farmacologia , Glutationa Peroxidase GPX1
2.
ACS Synth Biol ; 7(1): 249-257, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28866886

RESUMO

The active center of selenium-containing glutathione peroxidase (GPx) is selenocysteine (Sec), which is is biosynthesized on its tRNA in organisms. The decoding of Sec depends on a specific elongation factor and a Sec Insertion Sequence (SECIS) to suppress the UGA codon. The expression of mammalian GPx is extremely difficult with traditional recombinant DNA technology. Recently, a chimeric tRNA (tRNAUTu) that is compatible with elongation factor Tu (EF-Tu) has made selenoprotein expression easier. In this study, human glutathione peroxidase (hGPx) was expressed in amber-less Escherichia coli C321.ΔA.exp using tRNAUTu and seven chimeric tRNAs that were constructed on the basis of tRNAUTu. We found that chimeric tRNAUTu2, which substitutes the acceptor stem and T-stem of tRNAUTu with those from tRNASec, enabled the expression of reactive hGPx with high yields. We also found that chimeric tRNAUTuT6, which has a single base change (A59C) compared to tRNAUTu, mediated the highest reactive expression of hGPx1. The hGPx1 expressed exists as a tetramer and reacts with positive cooperativity. The SDS-PAGE analysis of hGPx2 produced by tRNAUTuT6 with or without sodium selenite supplementation showed that the incorporation of Sec is nearly 90%. Our approach enables efficient selenoprotein expression in amber-less Escherichia coli and should enable further characterization of selenoproteins in vitro.


Assuntos
Escherichia coli/metabolismo , RNA de Transferência/metabolismo , Códon de Terminação , Eletroforese em Gel de Poliacrilamida , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , RNA de Transferência/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Selenocisteína/metabolismo , Espectrometria de Massas por Ionização por Electrospray
3.
IUBMB Life ; 65(11): 951-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24170573

RESUMO

Phospholipid hydroperoxide glutathione peroxidase (PHGPx or GPx4; EC1.11.1.12) is a selenoperoxidase that can directly reduce phospholipid and cholesterol hydroperoxides. The mature cytoplasmic GPx4 is a monomeric protein with molecular weight of 19.5 kDa. In this study, human GPx4 (hGPx4) gene was amplified from the complementary DNA library of human hepatoma cell line. Eukaryotic expression plasmid pSelExpress1-leader-GPx4 was constructed and transfected into the eukaryotic cells HEK293T. Expression of hGPx4 was detected by Western blotting, and the target protein was purified by immobilized metal affinity chromatography. The results of the activity and kinetics of the purified protein show that the obtained protein follows a "ping-pong" mechanism, which is similar to that of native cytosolic glutathione peroxidase (GPx1; EC1.11.1.9). This is the first time that hGPx4 could be expressed and purified from HEK293T cells, and this work will provide an important resource of hGPx4 for its functional study in vitro and in vivo.


Assuntos
Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/metabolismo , Linhagem Celular Tumoral , Clonagem Molecular , Células HEK293 , Humanos , Cinética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Recombinantes/biossíntese , Selenoproteínas/biossíntese , Selenoproteínas/metabolismo , Transfecção
4.
J Mol Recognit ; 26(1): 38-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23280616

RESUMO

Accumulating evidence shows that glutathione peroxidase (GPX, EC.1.11.1.9), one of the most important antioxidant selenoenzymes, plays an essential role in protecting cells and tissues against oxidative damage by catalyzing the reduction of hydrogen peroxide by glutathione. Unfortunately, because of the limited availability and poor stability of GPX, it has not been used clinically to protect against oxidative stress. To overcome these problems, it is necessary to generate mimics of GPX. In this study, we have used directed mutagenesis and the inclusion of a selenocysteine (Sec) insertion sequence to engineer the expression in eukaryotic cells of human glutathione transferase zeta1-1 (hGSTZ1-1) with Sec in the active site (seleno-hGSTZ1-1). This modification converted hGSTZ1-1 into an active GPX and is the first time this has been achieved in eukaryotic cells. The GPX activity of seleno-hGSTZ1-1 is higher than that of GPX from bovine liver, indicating Sec at the active site plays an important role in the determination of catalytic specificity and performance. Kinetic studies revealed that the ping-pong catalytic mechanism of Se-hGSTZ1-1 is similar to that of the natural GPX.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/genética , Selenocisteína/química , Selenocisteína/genética , Catálise , Domínio Catalítico , Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Selênio/química , Selênio/metabolismo , Selenocisteína/metabolismo , Temperatura
5.
J Mol Recognit ; 23(4): 352-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19938186

RESUMO

Glutathione peroxidase (GPX) is a well-known antioxidant selenoenzyme, which can catalyze the reduction of a variety of hydroperoxides and consequently protect cells and other biological tissues against oxidative damage. Many attempts have been made to mimic its function, and a human catalytic antibody Se-scFv-B3 with GPX activity has been prepared in our previous study. This time, a new clone 2D8 that bound specifically to the glutathione analog GSH-S-DNPBu was selected again by using the technology of phage display antibody library, and then scFv-2D8 was successfully expressed in soluble form and purified using Ni(2+)-immobilized metal affinity chromatography. After being converted into selenium-containing scFv by chemically modification, it showed higher GPX activity than previous abzyme Se-scFv-B3. The heavy chain variable fragment of scFv-2D8 was also prepared and converted into selenium-containing protein using the same method. This selenium-containing single-domain antibody showed some GPX activity and, to the best of our knowledge, is the first human single-domain abzyme with GPX activity, which lays a foundation for preparing GPX abzyme with human origin, lower molecular weight and higher activity.


Assuntos
Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Glutationa Peroxidase/metabolismo , Selênio/química , Anticorpos Catalíticos/genética , Cromatografia de Afinidade , Humanos , Biblioteca de Peptídeos
6.
J Mol Recognit ; 22(4): 293-300, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19277948

RESUMO

Glutathione peroxidase (GPX) is one of the important members of the antioxidant enzyme family. It can catalyze the reduction of hydroperoxides with glutathione to protect cells against oxidative damage. In previous studies, we have prepared the human catalytic antibody Se-scFv-B3 (selenium-containing single-chain Fv fragment of clone B3) with GPX activity by incorporating a catalytic group Sec (selenocysteine) into the binding site using chemical mutation; however, its activity was not very satisfying. In order to try to improve its GPX activity, structural analysis of the scFv-B3 was carried out. A three-dimensional (3D) structure of scFv-B3 was constructed by means of homology modeling and binding site analysis was carried out. Computer-aided docking and energy minimization (EM) calculations of the antibody-GSH (glutathione) complex were also performed. From these simulations, Ala44 and Ala180 in the candidate binding sites were chosen to be mutated to serines respectively, which can be subsequently converted into the catalytic Sec group. The two mutated protein and wild type of the scFv were all expressed in soluble form in Escherichia coli Rosetta and purified by Ni(2+)-immobilized metal affinity chromatography (IMAC), then transformed to selenium-containing catalytic antibody with GPX activity by chemical modification of the reactive serine residues. The GPX activity of the mutated catalytic antibody Se-scFv-B3-A180S was significantly increased compared to the original Se-scFv-B3.


Assuntos
Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Glutationa Peroxidase/metabolismo , Região Variável de Imunoglobulina/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Selênio/metabolismo , Sequência de Aminoácidos , Anticorpos Catalíticos/genética , Anticorpos Catalíticos/isolamento & purificação , Sítios de Ligação , Western Blotting , Células Clonais , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Glutationa/química , Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Humanos , Ligação de Hidrogênio , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Selenocisteína/metabolismo , Alinhamento de Sequência , Termodinâmica
7.
J Mol Recognit ; 21(5): 324-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18574795

RESUMO

In order to generate catalytic antibodies with glutathione peroxidase (GPX) activity, we prepared GSH-S-2,4-dinitrophenyl t-butyl ester (GSH-S-DNPBu) as target antigen. Three clones (A11, B3, and D5) that bound specifically to the antigen were selected from the phage display antibody library (human synthetic VH + VL single-chain Fv fragment (scFv) library). Analysis of PCR products using gel electrophoresis and sequencing showed that only clone B3 beared intact scFv-encoding gene, which was cloned into the expression vector pPELB and expressed as soluble form (scFv-B3) in Escherichia coli Rosetta. The scFv-B3 was purified by Ni(2+)-immobilized metal affinity chromatography (IMAC). The yield of purified proteins was about 2.0-3.0 mg of proteins from 1 L culture. After the active site serines of scFv-B3 were converted into selenocysteines (Secs) with the chemical modification method, we obtained the human catalytic antibody (Se-scFv-B3) with GPX activity of 1288 U/micromol.


Assuntos
Anticorpos Catalíticos/metabolismo , Glutationa Peroxidase/metabolismo , Anticorpos Catalíticos/química , Anticorpos Catalíticos/isolamento & purificação , Catálise , Avaliação Pré-Clínica de Medicamentos , Glutationa/análogos & derivados , Glutationa/imunologia , Humanos , Fragmentos de Imunoglobulinas/química , Biblioteca de Peptídeos , Selenocisteína/química
8.
Sheng Wu Gong Cheng Xue Bao ; 18(1): 74-8, 2002 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-11977605

RESUMO

The expression vectors of the gene encoding ScFv-2F3 were transformed into E. coli BL21(DE3). Clones of higher expression were first selected, then were grown in the presence of IPTG at 37 degrees C to induce its expression. The culture conditions were carefully optimized. It was found that optimal conditions were as follows: the induction was started as OD590 reached to 1.0-1.8; the concentration of IPTG was 0.3-0.5 mmol/L and induction time is 7 h. The yield of ScFv-2F3 expressed in the selected clones is about 20% of the total proteins. The optimal culture conditions were successfully applied to fermenter of 50 L. The conditions of washing the inclusion bodies were also optimized. A two-step method was used to renature the inclusion body. The expression product of interest and its biological activities were characterized with Western blotting and ELISA. A novel selenium-containing single-chain abzyme with GPX activity was prepared.


Assuntos
Anticorpos Catalíticos/biossíntese , Expressão Gênica , Fragmentos de Imunoglobulinas/biossíntese , Anticorpos Catalíticos/química , Anticorpos Catalíticos/genética , Anticorpos Catalíticos/isolamento & purificação , Reatores Biológicos/microbiologia , Clonagem Molecular , Escherichia coli , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/isolamento & purificação , Corpos de Inclusão/metabolismo , Dobramento de Proteína , Renaturação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA