Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Heliyon ; 10(6): e28077, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515727

RESUMO

The medicinal plant Spatholobus suberectus Dunn is easily exposed to shade stress during growth, but its shade responses and shade stress resistant mechanisms have not been clarified. In this study, shade treatments including four attenuated sunlight intensities (100%, 60%, 40%, and 10%) and three shade durations (30 d, 45 d, and 60 d) were applied to S. suberectus. The shade-induced morphological indicators, phytohormonal regulations, metabolic flavonoids contents, transcriptomic flavonoid pathway gene expressions, and stress physiological changes of S. suberectus were analyzed. The putative promoter cis-regulatory elements (CREs) of 18 flavonoid biosynthetic pathway genes were identified. Results showed the stem growth indicators of S. suberectus were better at 40% light intensity. Phytohormones were involved in the shade-induced responses. Short-term shade (30 d) increased total flavonoids, gallated catechins and especially epigallocatechin gallate contents and favored for boosting medicinal value. Long-term shade (45 d, 60 d) tended to decrease flavonoids. The shade-induced flavonoids changes were attributed to their corresponding biosynthesizing genes expression variations. The high antioxidant capacity and the presence of phytohormone-, stress-, and development-related CREs provided the basis for stress resistance. In conclusion, the multiple responses under shade and the CREs analysis elucidated S. suberectus' shade tolerance.

2.
Front Endocrinol (Lausanne) ; 14: 1229777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795374

RESUMO

Introduction: Ganshu Nuodan is a liver-protecting dietary supplement composed of Ganoderma lucidum (G. lucidum) spore powder, Pueraria montana (Lour.) Merr. (P. montana), Salvia miltiorrhiza Bunge (S. miltiorrhiza) and Astragalus membranaceus (Fisch.) Bunge. (A. membranaceus). However, its pharmacodynamic material basis and mechanism of action remain unknown. Methods: A mouse model of acute alcohol liver disease (ALD) induced by intragastric administration of 50% alcohol was used to evaluate the hepatoprotective effect of Ganshu Nuodan. The chemical constituents of Ganshu Nuodan were comprehensively identified by UPLC-QTOF/MS, and then its pharmacodynamic material basis and potential mechanism of action were explored by proteomics and network pharmacology. Results: Ganshu Nuodan could ameliorate acute ALD, which is mainly manifested in the significant reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and malondialdehyde (MDA) content in liver and the remarkably increase of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver. Totally 76 chemical constituents were identified from Ganshu Nuodan by UPLC-QTOF/MS, including 21 quinones, 18 flavonoids, 11 organic acids, 7 terpenoids, 5 ketones, 4 sterols, 3 coumarins and 7 others. Three key signaling pathways were identified via proteomics studies, namely Arachidonic acid metabolism, Retinol metabolism, and HIF-1 signaling pathway respectively. Combined with network pharmacology and molecular docking, six key targets were subsequently obtained, including Ephx2, Lta4h, Map2k1, Stat3, Mtor and Dgat1. Finally, these six key targets and their related components were verified by molecular docking, which could explain the material basis of the hepatoprotective effect of Ganshu Nuodan. Conclusion: Ganshu Nuodan can protect acute alcohol-induced liver injury in mice by inhibiting oxidative stress, lipid accumulation and apoptosis. Our study provides a scientific basis for the hepatoprotective effect of Ganshu Nuodan in acute ALD mice and supports its traditional application.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteômica , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Etanol/metabolismo , Etanol/uso terapêutico , Glutationa/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1175985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082132

RESUMO

Introduction: Xuanhuang Pill (XHP) is a traditional Chinese medicine oral formula composed of 10 herbs. This study aims to verify the hepatoprotective activity of XHP and explain its possible mechanism. Methods: The hepatoprotective activity of XHP was evaluated by constructing a mouse model of alcoholic liver disease, and the mechanism of XHP was preliminarily explained by utilizing ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-QTOF/MS), proteomics and network pharmacology. Results: The current study demonstrated that treatment with XHP ameliorated acute alcohol-induced liver injury in mice by significantly reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and triglycerides (TGs) and malondialdehyde (MDA) content. Remarkably, treatment also increased superoxide dismutase (SOD) activity and glutathione (GSH) content. UPLC-QTOF/MS, 199 compounds were identified as within the make-up of the XHP. Network pharmacology analysis showed that 103 targets regulated by 163 chemical components may play an important role in the protective liver effect mediated by XHP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggest that the HIF-1, FoxO, PI3K-Akt, insulin, and thyroid hormone signaling pathways are key modulators of XHP's effects. Finally, eight key targets including Mapk1, Mapk3, Akt1, Map2k1, Pik3ca, Pik3cg, Raf1, and Prkca were verified by molecular docking and proteomics analysis, which provide insight into the hepatoprotective effect observed with XHP treatment. Conclusion: In summary, these results improved upon knowledge of the chemical composition and the potential mechanisms of hepatoprotective action of oral XHP treatment, providing foundational support for this formulation as a viable therapeutic option for alcoholic liver disease.


Assuntos
Hepatopatias Alcoólicas , Farmacologia em Rede , Animais , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Cromatografia Líquida
4.
Chin J Nat Med ; 21(3): 185-196, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003641

RESUMO

Nasopharyngeal carcinoma (NPC) is the third most common malignancy with a high recurrence and metastasis rate in South China. Natural compounds extracted from traditional Chinese herbal medicines have been developed and utilized for the treatment of a variety of cancers with modest properties and slight side effects. Maackiain (MA) is a type of flavonoid that was first isolated from leguminous plants, and it has been reported to relieve various nervous system disorders and exert anti-allergic as well as anti-inflammatory effects. In this study, we demonstrated that MA inhibited proliferation, arrested cell cycle and induced apoptosis in nasopharyngeal carcinoma CNE1 and CNE2 cells in vitro and in vivo. The expression of the related proteins associated with these processes were consistent with the above effects. Moreover, transcriptome sequencing and subsequent Western blot experiments revealed that inhibition of the MAPK/Ras pathway may be responsible to the anti-tumor effect of MA on NPC cells. Therefore, the effects of MA and an activator of this pathway, tertiary butylhydroquinone (TBHQ), alone or combination, were investigated. The results showed TBHQ neutralized the inhibitory effects of MA. These data suggest that MA exerts its anti-tumor effect by inhibiting the MAPK/Ras signaling pathway and it has the potential to become a treatment for patients with NPC.


Assuntos
Apoptose , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia
5.
Front Microbiol ; 14: 1334338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260912

RESUMO

Excessive Cd accumulation in soil reduces the production of numerous plants, such as Sophora tonkinensis Gagnep., which is an important and widely cultivated medicinal plant whose roots and rhizomes are used in traditional Chinese medicine. Applying a mixture of biochar and organic fertilizers improved the overall health of the Cd-contaminated soil and increased the yield and quality of Sophora. However, the underlying mechanism between this mixed fertilization and the improvement of the yield and quality of Sophora remains uncovered. This study investigated the effect of biochar and organic fertilizer application (BO, biochar to organic fertilizer ratio of 1:2) on the growth of Sophora cultivated in Cd-contaminated soil. BO significantly reduced the total Cd content (TCd) in the Sophora rhizosphere soil and increased the soil water content, overall soil nutrient levels, and enzyme activities in the soil. Additionally, the α diversity of the soil bacterial community had been significantly improved after BO treatment. Soil pH, total Cd content, total carbon content, and dissolved organic carbon were the main reasons for the fluctuation of the bacterial dominant species. Further investigation demonstrated that the abundance of variable microorganisms, including Acidobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Patescibacteria, Armatimonadetes, Subgroups_ 6, Bacillus and Bacillus_ Acidiceler, was also significantly changed in Cd-contaminated soil. All these alterations could contribute to the reduction of the Cd content and, thus, the increase of the biomass and the content of the main secondary metabolites (matrine and oxymatrine) in Sophora. Our research demonstrated that the co-application of biochar and organic fertilizer has the potential to enhance soil health and increase the productivity and quality of plants by regulating the microorganisms in Cd-contaminated soil.

6.
Zhongguo Zhong Yao Za Zhi ; 47(22): 5978-5990, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471923

RESUMO

Peptide is a compound consisting of 2-50 amino acids, which is intermediate between small molecule and protein. It is characterized by a variety of biological activities, easy absorption, strong specific targeting, and few side effects and has become one of the hotspots in biomedical research in recent years. Chinese medicine contains a large number of peptides. The traditional processing methods such as decocting and boiling can effectively boost peptides to exert their due biological activities. At present, however, the research on Chinese medicinal components in laboratory generally employs high-concentration alcohol extraction method, which may cause the peptides to be ignored in many natural Chinese medicines. Substantial studies have revealed that the peptides in Chinese medicine are important material basis responsible for the traditional efficacy. Based on years of research and literature retrieval, this study put forward the concept of "traditional Chinese medicine(TCM)-peptides", referring to the components consisting of two or more amino acids with molecular weight between small molecules and proteins that can express the efficacy of Chinese medicine. Furthermore, this study also summarized the extraction and separation of TCM-peptides, and structure determination methods and routes, predicted the research prospect of modern research methods of TCM-peptides based on "holistic view" and big data. The artificial intelligence prediction was combined with high-throughput screening technology to improve the discovery efficiency and accuracy of TCM-peptides, and holographic images between TCM-peptides and biological targets were established to provide references for the innovative drug design and related health product development of TCM-peptides based on TCM theories.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Inteligência Artificial , Medicamentos de Ervas Chinesas/química , Projetos de Pesquisa , Peptídeos , Proteínas , Aminoácidos
7.
Front Immunol ; 13: 1007186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238291

RESUMO

A component of licorice polysaccharide (GPS-1) was extracted from licorice, its primary structure was identified and characterized for the first time, and its immunomodulatory activity was studied. Crude licorice polysaccharide was isolated and purified by DEAE sepharose FF ion-exchange column chromatography and Chromdex 200 PG gel filtration column chromatography to obtain a purified Glycyrrhiza polysaccharide named GPS-1. NMR and methylation analysis revealed that GPS-1 is composed of homogalacturonan (HG)-type pectin with 4)-D-GalpA-(1 as the backbone. This study of GPS-1 also examined its significant role in regulating immune activity in vitro and in vivo. As a result, GPS-1 promoted the secretion of IFN-γ and IL-4 in mice and increased the proportion of CD3+CD4+ and CD3+CD8+ T lymphocytes in their spleens. Dendritic cells (DCs) treated with GPS-1 showed promotion of DC maturation, antigen presentation, and phagocytic capacity. The results suggest that GPS-1 is a potential immunomodulator that stimulates the immune system by regulating multiple signaling pathways. Combined with our characterization of the primary structure of GPS-1, the present investigation provides the basis for future study of the form-function relationship of polysaccharides.


Assuntos
Glycyrrhiza , Triterpenos , Animais , Glycyrrhiza/química , Fatores Imunológicos/química , Interleucina-4 , Camundongos , Pectinas , Polissacarídeos/química
9.
Front Plant Sci ; 12: 761068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899784

RESUMO

Mesona chinensis Benth (MCB) is an important Chinese herbal medicine. The plant factories might be one of the ways to solve the shortage of MCB supply. In this study, the MCB seedlings were treated under the red (R) and blue (B) lights in the plant factory. Results showed that the red light promoted the growth and development of MCB in comparison with the blue light. Under the red-light condition, the biomass, plant height, and root characteristics were significantly higher than those under blue-light condition, while the soil and plant analyzer development (SPAD) under the red-light treatment was significantly lower than that under the blue-light treatment. Red light also significantly promoted the content of soluble sugar and pectin of MCB compared with blue light. Transcriptome analysis showed that a total of 4,165 differentially expressed genes (DEGs) were detected including 2,034 upregulated and 2,131 downregulated. Of these, 1,112 DEGs including 410 upregulated and 702 downregulated genes were associated with 111 pathways. Moreover, a total of 8,723 differentially expressed transcription factors (TFs) were identified in R vs. B, and these TFs were distributed in 56 gene families. Metabonomic results revealed that a total of 184 metabolites and 99 differentially expressed metabolites (DEMs) (42 upregulated and 57 downregulated) were identified in the red- and blue-light treatments. Integrative analysis of transcriptome and metabolome unveiled that a total of 24 pathways included 70 compounds (metabolites) and were associated with 28 unigenes. In particular, these pathways included starch and sucrose metabolism, phenylpropanoid biosynthesis, cysteine and methionine metabolism, glycolysis/gluconeogenesis, and pentose and glucuronate interconversions. The unigenes included asparagine synthetase (AS), thymidine kinase (TK), alpha, alpha-trehalose-phosphate synthase (TPS), phosphatase IMPL1 (IMPL1), dihydroflavonol 4-reductase (D4R), and 4-coumarate-CoA ligase-like 6 (4CL6), bifunctional aspartokinase-homoserine dehydrogenase 1 (thrA), and abscisic acid 8'-hydroxylase 2 isoform X1 (ABA8). It was indicated that these pathways and genes might play important roles in the growth and development of MCB. This study laid a foundation for the future research of MCB.

10.
Front Oncol ; 11: 684351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490085

RESUMO

Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in women worldwide. Some therapeutic drugs and approaches could cause side effects and weaken the immune system. The combination of conventional therapies and traditional Chinese medicine (TCM) significantly improves treatment efficacy in breast cancer. However, the chemical composition and underlying anti-tumor mechanisms of TCM still need to be investigated. The primary aim of this study is to provide unique insights to screen the natural components for breast cancer therapy using high-throughput transcriptome analysis. Differentially expressed genes were identified based on two conditions: single samples and groups were classified according to their pharmaceutical effect. Subsequently, the sample treated with E. cochinchinensis Lour. generated the most significant DEGs set, including 1,459 DEGs, 805 upregulated and 654 downregulated. Similarly, group 3 treatment contained the most DEGs (414 DEGs, 311 upregulated and 103 downregulated). KEGG pathway analyses showed five significant pathways associated with the inflammatory and metastasis processes in cancer, which include the TNF, IL-17, NF-kappa B, MAPK signaling pathways, and transcriptional misregulation in cancer. Samples were classified into 13 groups based on their pharmaceutical effects. The results of the KEGG pathway analyses remained consistent with signal samples; group 3 presents a high significance. A total of 21 genes were significantly regulated in these five pathways, interestingly, IL6, TNFAIP3, and BRIC3 were enriched on at least two pathways, seven genes (FOSL1, S100A9, CXCL12, ID2, PRS6KA3, AREG, and DUSP6) have been reported as the target biomarkers and even the diagnostic tools in cancer therapy. In addition, weighted correlation network analysis (WGCNA) was used to identify 18 modules. Among them, blue and thistle2 were the most relevant modules. A total of 26 hub genes in blue and thistle2 modules were identified as the hub genes. In conclusion, we screened out three new TCM (R. communis L., E. cochinchinensis Lour., and B. fruticosa) that have the potential to develop natural drugs for breast cancer therapy, and obtained the therapeutic targets.

11.
J Ethnopharmacol ; 271: 113879, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524509

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora Tonkinensis Gagnep. (STG) has been used as a folk medicine for the treatment of different cancers, especially for nasopharyngeal carcinoma, cervical cancer, liver cancer, stomach cancer, lung cancer and leukemia in China. However, the main chemical composition and anticancer mechanism of chloroform extract of STG (CESTG) were still not very clear. AIM OF STUDY: This work was carried out to investigate the anticancer effects and mechanisms of chloroform extract of STG (CESTG) on NPC. METHODS: Cultured NPC CNE1, CNE2 and Np69 cells were treated with CESTG. Cells were subjected to cell proliferation, colony-forming, migration and invasion assays. Cell cycle and apoptosis were measured by flow cytometry. Western blotting and morphological analysis were also performed. Tumor xenografts and drug treatments were made in BALB/c nude mice. The main compounds of CESTG was separated by HPLC. RESULTS: CESTG inhibited cell viability, clonal growth and induced cell apoptosis in a dose-dependent manner by silencing the PI3K/AKT/mTOR signaling pathway, which is associated with upregulation of cleaved PARP, caspase 3/7/8/9, cleaved caspase 3/7/8/9, Bax and downregulation of PARP, P-PI3K, PI3K, P-AKT, AKT, P-mTOR, mTOR and Bcl-2. In addition, CESTG arrested cell cycle in the G1/S phase, correlating with decreased levels of cyclin D1/B1, CDK 4 and 6. CESTG decreased cell migration and invasion which correlated with decreased expression of ß-catenin, vimentin and snail. CESTG significantly inhibited the tumor growth without toxicity. CONCLUSION: The results presented here suggest that CESTG could be use as a potential source of NPC therapeutic drug.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sophora/química , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofórmio/química , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Chem Biodivers ; 17(10): e2000366, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32734631

RESUMO

The in vitro tissue culture of medicinal plants is considered as a potential source for plant-derived bioactive secondary metabolites. The in vitro tissue culture of American ginseng has wide commercial applications in pharmaceutical, nutraceutical, food, and cosmetic fields with regard to the production of bioactive compounds such as ginsenosides and polysaccharides. This review highlights the recent progress made on different types of tissue culture practices with American ginseng, including callus culture, somatic embryo culture, cell suspension culture, hairy root culture, and adventitious root culture. The tissue culture conditions for inducing ginseng callus, somatic embryos, cell suspension, hairy roots, and adventitious roots were analyzed. In addition, the optimized conditions for increasing the production of ginsenosides and polysaccharides were discussed. This review provides references for the use of modern biotechnology to improve the production of bioactive compounds from American ginseng, as well as references for the development and sustainable utilization of American ginseng resources.


Assuntos
Panax/citologia , Raízes de Plantas/citologia , Plantas Medicinais/citologia , Ginsenosídeos/biossíntese , Ginsenosídeos/química , Panax/química , Panax/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química
13.
Front Genet ; 11: 701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714378

RESUMO

Andrographis paniculata (Chinese name: Chuanxinlian) is an annual dicotyledonous medicinal plant widely grown in China and Southeast Asia. The dried plant has a highly acclaimed usage in the traditional Chinese medicine for its antipyretic, anti-inflammatory, and analgesic effects. In order to help delineate the biosynthetic pathways of various secondary metabolites, we report in this study a high-quality reference genome for A. paniculata. With the help of both PacBio single molecule real time sequencing and Illumina sequencing reads for error correction, the A. paniculata genome was assembled into a total size of 284 Mb with a contig N50 size of 5.14 Mb. The contigs were further assembled into 24 pseudo-chromosomes by the Hi-C technique. We also analyzed the gene families (e.g., KSL, and CYP450) whose protein products are essential for synthesizing bioactive compounds in A. paniculata. In conclusion, the high-quality A. paniculata genome assembly builds the foundation for decoding the biosynthetic pathways of various medicinal compounds.

14.
Sci Rep ; 10(1): 12473, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719421

RESUMO

Sophora tonkinensis belongs to genus Sophora of the Fabaceae family. It is mainly distributed in the ridge and peak regions of limestone areas in western China and has high medicinal value and important ecological functions. Wild populations of S. tonkinensis are in danger and need urgent conservation. Furthermore, wild S. tonkinensis resources are very limited relative to the needs of the market, and many adulterants are present on the market. Therefore, a method for authenticating S. tonkinensis and its adulterants at the molecular level is needed. Chloroplast genomes are valuable sources of genetic markers for phylogenetic analyses, genetic diversity evaluation, and plant molecular identification. In this study, we report the complete chloroplast genome of S. tonkinensis. The circular complete chloroplast genome was 154,644 bp in length, containing an 85,810 bp long single-copy (LSC) region, an 18,321 bp short single-copy (SSC) region and two inverted repeat (IR) regions of 50,513 bp. The S. tonkinensis chloroplast genome comprised 129 genes, including 83 protein-coding genes, 38 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The structure, gene order and guanine and cytosine (GC) content of the S. tonkinensis chloroplast genome were similar to those of the Sophora alopecuroides and Sophora flavescens chloroplast genomes. A total of 1,760 simple sequence repeats (SSRs) were identified in the chloroplast genome of S. tonkinensis, and most of them (93.1%) were mononucleotides. Moreover, the identified SSRs were mainly distributed in the LSC region, accounting for 60% of the total number of SSRs, while 316 (18%) and 383 (22%) were located in the SSC and IR regions, respectively. Only one complete copy of the rpl2 gene was present at the LSC/IRB boundary, while another copy was absent from the IRA region because of the incomplete structure caused by IR region expansion and contraction. The phylogenetic analysis placed S. tonkinensis in Papilionoideae, sister to S. flavescens, and the genera Sophora and Ammopiptanthus were closely related. The complete genome sequencing and chloroplast genome comparative analysis of S. tonkinensis and its closely related species presented in this paper will help formulate effective conservation and management strategies as well as molecular identification approaches for this important medicinal plant.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais/genética , Sophora/genética , Composição de Bases , China , Cloroplastos/genética , Genoma de Planta , Repetições de Microssatélites , Filogenia , RNA de Transferência/genética , Sophora/classificação , Sequenciamento Completo do Genoma
15.
Front Pharmacol ; 10: 1400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849659

RESUMO

Siraitia grosvenorii (Swingle) C. Jeffrey, a member of the family Cucurbitaceae, is a unique economic and medicinal plant grown in China. For more than 300 years, S. grosvenorii has been used as a natural sweetener and as a traditional medicine for the treatment of pharyngitis, pharyngeal pain, as well as an anti-tussive remedy in China. It is one of the first approved medicine food homology species in China. It has been widely studied as a natural product with high development potential. Therefore, the present paper provides a review of the botanical characterization, traditional uses and ethnopharmacology, food and nutritional values, chemical constituents, pharmacological effects, toxicology, and development direction for the future of S. grosvenorii. Phytochemical studies have revealed that the chemical composition of this plant mainly includes iridoid and phenylpropanoid glycosides. Several compounds such as triterpenoids, flavonoids, and amino acids have been isolated from the plant. S. grosvenorii and its active constituents possess broad pharmacological properties, such as antioxidant, hypoglycemic, immunologic, anti-tussive and sputum-reducing, hepatoprotective, and antimicrobial activities, etc. By documenting the comprehensive information of S. grosvenorii, we hope to establishes the groundwork for further research on the mechanism of action of S. grosvenorii and its development as a new health food in the future.

16.
Sci Data ; 6(1): 113, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273216

RESUMO

Spatholobus suberectus Dunn (S. suberectus), which belongs to the Leguminosae, is an important medicinal plant in China. Owing to its long growth cycle and increased use in human medicine, wild resources of S. suberectus have decreased rapidly and may be on the verge of extinction. De novo assembly of the whole S. suberectus genome provides us a critical potential resource towards biosynthesis of the main bioactive components and seed development regulation mechanism of this plant. Utilizing several sequencing technologies such as Illumina HiSeq X Ten, single-molecule real-time sequencing, 10x Genomics, as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), we assembled a chromosome-scale genome about 798 Mb in size. In total, 748 Mb (93.73%) of the contig sequences were anchored onto nine chromosomes with the longest scaffold being 103.57 Mb. Further annotation analyses predicted 31,634 protein-coding genes, of which 93.9% have been functionally annotated. All data generated in this study is available in public databases.


Assuntos
Fabaceae/genética , Genoma de Planta , Mapeamento de Sequências Contíguas , Genômica , Anotação de Sequência Molecular
17.
Planta ; 249(2): 393-406, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30219960

RESUMO

MAIN CONCLUSION: Oleanolic acid glucuronosyltransferase (OAGT) genes synthesizing the direct precursor of oleanane-type ginsenosides were discovered. The four recombinant proteins of OAGT were able to transfer glucuronic acid at C-3 of oleanolic acid that yields oleanolic acid 3-O-ß-glucuronide. Ginsenosides are the primary active components in the genus Panax, and great efforts have been made to elucidate the mechanisms underlying dammarane-type ginsenoside biosynthesis. However, there is limited information on oleanane-type ginsenosides. Here, high-performance liquid chromatography analysis demonstrated that oleanane-type ginsenosides (particularly ginsenoside Ro and chikusetsusaponin IV and IVa) are the abundant ginsenosides in Panax zingiberensis, an extremely endangered Panax species in southwest China. These ginsenosides are derived from oleanolic acid 3-O-ß-glucuronide, which may be formed from oleanolic acid catalyzed by an unknown oleanolic acid glucuronosyltransferase (OAGT). Transcriptomic analysis of leaves, stems, main roots, and fibrous roots of P. zingiberensis was performed, and a total of 46,098 unigenes were obtained, including all the identified homologous genes involved in ginsenoside biosynthesis. The most upstream genes were highly expressed in the leaves, and the UDP-glucosyltransferase genes were highly expressed in the roots. This finding indicated that the precursors of ginsenosides are mainly synthesized in the leaves and transported to different parts for the formation of particular ginsenosides. For the first time, enzyme activity assay characterized four genes (three from P. zingiberensis and one from P. japonicus var. major, another Panax species with oleanane-type ginsenosides) encoding OAGT, which particularly transfer glucuronic acid at C-3 of oleanolic acid to form oleanolic acid 3-O-ß-glucuronide. Taken together, our study provides valuable genetic information for P. zingiberensis and the genes responsible for synthesizing the direct precursor of oleanane-type ginsenosides.


Assuntos
Genes de Plantas/genética , Ginsenosídeos/biossíntese , Glucuronosiltransferase/genética , Ácido Oleanólico/análogos & derivados , Panax/genética , Proteínas de Plantas/genética , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Glucuronatos/biossíntese , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Ácido Oleanólico/biossíntese , Ácido Oleanólico/metabolismo , Panax/enzimologia , Panax/metabolismo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes , Análise de Sequência de DNA
18.
Front Pharmacol ; 10: 1627, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082153

RESUMO

[This corrects the article DOI: 10.3389/fphar.2019.01400.].

19.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2216-2223, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29945370

RESUMO

Spatholobi Caulis, the vine stem of Spatholobus suberectus and widely used in China and Southeast Asian nations, has the effects on nourishing the blood and promoting blood flow, regulating menstruation and relieving pain, and invigorating the nerves. Through consulting the herbal textual and local chronicles, we summarized the original textual research and medicinal evolution on Spatholobi Caulis to analyze the changes of varieties in different historical periods. Further, the major active ingredient in Spatholobi Caulis was discussed. According to the literature to date, 60 flavonoids compounds have been isolated and could be divided into isoflavones, dihydroflavones, flavanols, dihydroflavonols, procyaninides, chalcones, pterocarpans, isoflavanols, isoflavanones and aurone according to their molecular structures. These indicative ingredients in Spatholobi Caulis showed pharmacological activities on regulation of the blood system, anti-tumor, anti-oxidation, anti-virus, anti-bacteria and inhibition of melanin deposition. This review will provide reference and basis for the sustainable use of resources and industry development on Spatholobi Caulis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fabaceae/química , Flavonoides/análise , China , Humanos , Caules de Planta/química
20.
J Ethnopharmacol ; 225: 18-30, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29935346

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Salvia is one of the largest genera of the Lamiaceae family. In China, about 40 Salvia species have been used as medicinal plants for treatment of various diseases, specifically hepatic and renal diseases and those of the cardiovascular and immune systems. AIM OF THIS REVIEW: This review aims to provide systematically organized information on the ethnopharmacology, phytochemistry, pharmacology, and toxicology of medicinal Salvia species in China to support their therapeutic potential in the treatment of human diseases. MATERIALS AND METHODS: Relevant information on the Chinese Salvia species was obtained from scientific online databases such as Google Scholar, PubMed, and SciFinder. Additional information was derived from other literature sources (e.g. Chinese Pharmacopoeia 2015 edition, Chinese herbal classic books, PhD and MSc thesis, etc). RESULTS: Our comprehensive analysis of the scientific literature indicates that many Chinese Salvia species are valuable and popular herbal medicines with therapeutic potentials to cure various ailments. Phytochemical analyses identified diterpenoids and phenolic acids as the major bioactive substances in Chinese Salvia species. Crude extracts and pure compounds isolated from the Chinese Salvia species exhibited various pharmacological activities, typically targeting the cardiovascular and immune systems and hepatic and renal diseases. CONCLUSION: This review summarizes the results from current studies about basic properties of medicinal Salvia species in China, such as active constituents and their mechanism of action, pharmacokinetics, underlying molecular mechanisms, toxicology, and efficacy, which are still being studied and explored to achieve integration into medical practice.


Assuntos
Fitoterapia , Salvia , Animais , China , Etnobotânica , Etnofarmacologia , Humanos , Medicina Tradicional , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Preparações de Plantas/análise , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Preparações de Plantas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA