Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Theranostics ; 13(8): 2616-2631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215575

RESUMO

Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Processamento Alternativo/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985783

RESUMO

Cannabidiol (CBD) is the main active ingredient in the cannabis plant used for treating epilepsy and related diseases. However, how CBD ameliorates epilepsy and its effect on the hippocampus remains unknown. Herein, we evaluated how CBD ameliorates seizure degree in pentylenetetrazol (PTZ) induced epilepsy mice after being exposed to CBD (10 mg/kg p.o). In addition, transcriptome and metabolomic analysis were performed on the hippocampus. Our results suggested that CBD could alleviate PTZ-induced seizure, of which the NPTX2, Gprc5c, Lipg, and Stc2 genes were significantly down-regulated in mice after being exposed to PTZ. Transcriptome analysis showed 97 differently expressed genes (CBD) and the PTZ groups. Metabonomic analysis revealed that compared with the PTZ group, 41 up-regulated and 67 down-regulated metabolites were identified in the hippocampus of epileptic mice exposed to CBD. The correlation analysis for transcriptome and metabolome showed that (±) 15-HETE and carnitine C6:0 were at the core of the network and were involved in the positive or negative regulation of the related genes after being treated with CBD. In conclusion, CBD ameliorates epilepsy by acting on the metabolism, calcium signaling pathway, and tuberculosis pathways in the hippocampus. Our study provided a practical basis for the therapeutic potential of treating epilepsy using CBD.


Assuntos
Canabidiol , Epilepsia , Camundongos , Animais , Canabidiol/uso terapêutico , Pentilenotetrazol/efeitos adversos , Anticonvulsivantes/uso terapêutico , Multiômica , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente
3.
Curr Med Chem ; 30(25): 2835-2849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36043744

RESUMO

Targeting the tumor microenvironment is a promising strategy to prevent metastasis, overcome acquired drug resistance, and improve the therapeutic effect. Hypoxia is one of the characteristics of the tumor microenvironment, which is mainly regulated by hypoxia-inducible factors. Hypoxia-inducible factors (HIFs) including HIF-1α, HIF-2α, and HIF-3α, of which HIF-2α has assumed a more important role in tumor hypoxia environment. It has been demonstrated that HIF-2α plays an important role in tumor diseases, including renal cell carcinoma, breast cancer, non-small cell lung cancer, and gastric cancer, among others. Therefore, targeting HIF-2α has become one of the important strategies for treating cancers. HIF-2α inhibitors can be divided into two categories: specific inhibitors and non-specific inhibitors. The former includes synthetic monomer compounds and traditional Chinese medicine extracts. In this review, we summarized, classified, and discussed current research on the structure, structure-activity relationship (SAR), and pharmacology of HIF-2α inhibitors, which is helpful to the rational design of effective drugs for various types of malignant tumors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Hipóxia , Microambiente Tumoral
4.
Phytomedicine ; 102: 154198, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35636175

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a serious problem for the women over 50 years old. Natural product puerarin (PUE) has been proven to improve PMOP with high safety. PMOP is a metabolic disorder affecting bone metabolism, indicating that endogenous metabolites amelioration may be a novel strategy for PMOP therapy. However, what the metabolic profile of POMP will be after PUE treatment is still obscure. PURPOSE: We purpose to figure out the metabolic characteristics of PMOP and to explore the intrinsic mechanism on the anti-osteoporosis efficacy after PUE treatment based on the serum metabolomics. METHODS: We established OVX rats as osteoporosis model, and the animals were distributed into Sham, OVX, and OVX+PUE (100 mg/kg/d) group. The femurs were analyzed by µ-CT and three-point bending test. Serum metabolomics was performed by UPLC/Q-TOF-MS. We also determined the body weight, liver weight, and the levels of serum TC, TG, LDL-C, and HDL-C. The key proteins of the PPARγ pathway and Wnt pathway were analyzed by Western blot and qPCR experiments. RESULTS: PUE treatment for 14 weeks both improved the bone structure and ameliorated lipid metabolism in ovariectomized rats. By determination and further analysis of serum metabolomics, we revealed that the endogenous metabolites was significantly changed in ovariectomized rats, and PUE treatment adjusted 23 differential metabolites, which were involved in phospholipid metabolism metabolism and PUFAs metabolic pathways. Close correlationships were futher found between the indexes of bone metabolism, lipid metabolism and the differential metabolites, particularly LysoPA, S1P and n-3/n-6 PUFAs. Further, we discovered that PUE regulated differentiation of BMSCs to elicit anti-osteoporosis efficacy, attributing to Wnt/ß-catenin signaling activation and PPARγ pathway inhibition initiated by metabolomics. CONCLUSION: PUE improves OVX-induced osteoporosis and lipid metabolism by regulating phospholipid metabolism and biosynthesis of PUFAs, resulting in reducing the adipogenic differentiation and promoting osteogenic differentiation of BMSCs via Wnt pathway activation and PPARγ pathway inhibition in ovariectomized rats. The study provides us a novel mechanism to explain the improvement of osteoporosis by PUE, depicts a metabolic profile of PMOP, and gives us another point cut for further exploring the pathogenesis of PMOP and looking for biomarkers of osteoporosis.


Assuntos
Ácidos Graxos Insaturados , Isoflavonas , Osteoporose Pós-Menopausa , Fosfolipídeos , Animais , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/sangue , Feminino , Humanos , Isoflavonas/farmacologia , Metabolismo dos Lipídeos , Metabolômica , Osteogênese , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Ovariectomia , PPAR gama/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Ratos
5.
Exp Mol Med ; 52(12): 1959-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33262480

RESUMO

Gut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Assuntos
Aporfinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/etiologia , Obesidade/metabolismo , Substâncias Protetoras/farmacologia , Animais , Aporfinas/química , Relação Dose-Resposta a Droga , Disbiose/tratamento farmacológico , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Obesidade/prevenção & controle , Substâncias Protetoras/química , Ratos
6.
Acta Pharmacol Sin ; 40(11): 1490-1500, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31092885

RESUMO

Previous studies report that (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic ingredient in green tea, has high efficacy against Alzheimer's disease (AD) in various in vivo and in vitro models. However, as a water-soluble component, how EGCG exerts its anti-AD effects in the brain was not elucidated. In the present study, we investigated the anti-AD mechanisms of EGCG in natural aging rats with cognitive impairments (CIs) assessed using Morris water maze. The rats were treated with EGCG (100 mg/kg per day, intragastrically) for 4 weeks. The expression of ß-amyloid (Aß1-42) in the brain was detected with immunohistochemical staining. We showed that EGCG administration significantly ameliorated the CI in the aging rats with CI and decreased Aß1-42 plaque formation in their brains. Then we used an efficient ultra-performance liquid chromatography-tandem mass spectrometer method to evaluate EGCG concentrations in rat plasma and tissue distribution. We found that EGCG absorption was significantly increased in the aging with CI group compared with control young rats. After oral administration of EGCG (100 mg), EGCG could not be detected in the brain tissues of control young rats, but it was found in the brain tissue of aging rats with CI. By using Evans Blue assay, transmission electron microscopy, and Western blotting assay, we demonstrated that the permeability of blood-brain barrier (BBB) was significantly increased in aging rats with CI. These results suggest that the permeability change of BBB is the physiological structural basis for EGCG treatment to improve learning and memory, thus providing a solid evidence for EGCG druggability in anti-AD therapeutic field.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Catequina/análogos & derivados , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Catequina/metabolismo , Catequina/farmacocinética , Catequina/uso terapêutico , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacocinética , Fragmentos de Peptídeos/metabolismo , Ratos Sprague-Dawley
7.
Int Immunopharmacol ; 70: 110-116, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30798159

RESUMO

BACKGROUND: Breast cancer is a prominent cause of death among women worldwide. Recent studies have demonstrated that artemisinin (ART) displays anti-tumor activity. Using a mouse breast cancer model, we investigated the effects of ART in vitro and in vivo to determine how it influences the anti-tumor immune response. METHODS: We measured the proliferation and apoptosis of 4T1 cells in vitro after ART treatment by MTT assay and FACS. To examine the effects of ART in vivo, tumor volumes and survival rates were measured in 4T1 tumor-bearing mice. FACS was used to determine the frequencies of Tregs, MDSCs, CD4+ IFN-γ+ T cells, and CTLs in the tumors and spleens of the mice. mRNA levels of the transcription factors T-bet and FOXP3 and cytokines IFN-γ, TNF-α, TGF-ß, and IL-10 were also determined by real-time RT-PCR. ELISA was used to measure TGF-ß protein levels in the cell culture supernatants. RESULTS: ART supplementation significantly increased 4T1 cell apoptosis and decreased TGF-ß levels in vitro. ART also impeded tumor growth in 4T1 TB mice and extended their survival. MDSC and Treg frequencies significantly decreased in the 4T1 TB mice after ART treatment while CD4+ IFN-γ+ T cells and CTLs significantly increased. ART significantly increased T-bet, IFN-γ, and TNF-α mRNA levels within the tumor and significantly decreased TGF-ß mRNA levels. CONCLUSION: ART supplementation hindered 4T1 tumor growth in vivo by promoting T cell activation and quelling immunosuppression from Tregs and MDSCs in the tumor.


Assuntos
Artemisininas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Imunização , Interferon gama/metabolismo , Ativação Linfocitária , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
8.
Mol Nutr Food Res ; 62(8): e1700890, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446867

RESUMO

SCOPE: We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aß1-42 -induced SH-SY5Y cells and APP/PS1 transgenic mice. METHODS AND RESULTS: Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aß1-42-induced toxicity in SH-SY5Y cells, increased cell viability, and decreased apoptosis in a dose-dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down-regulation of GRP78, CHOP, cleaved-caspase-12 and -3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER-stress-associated proteins. CONCLUSION: These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER-stress-associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Apoptose , Catequina/análogos & derivados , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Animais , Caspase 12/química , Caspase 12/genética , Caspase 12/metabolismo , Caspase 3/química , Caspase 3/genética , Caspase 3/metabolismo , Catequina/metabolismo , Catequina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/agonistas , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/metabolismo , Nootrópicos/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Distribuição Aleatória , Fator de Transcrição CHOP/agonistas , Fator de Transcrição CHOP/antagonistas & inibidores , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
9.
Molecules ; 22(8)2017 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-28758910

RESUMO

Maydis stigma is an important medicine herb used in many parts of the world for treatment of diabetes mellitus, which main bioactive ingredients are flavonoids. This paper describes for the first time a study on the comparative pharmacokinetics of six active flavonoid ingredients of Maydis stigma in normal and diabetic rats orally administrated with the decoction. Therefore, an efficient and sensitive ultra high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of six anti-diabetic ingredients (cynaroside, quercetin, luteolin, isorhamnetin, rutin and formononetin) of Maydis stigma in rat plasma has been developed and validated in plasma samples, which showed good linearity over a wide concentration range (r² > 0.99), and gave a lower limit of quantification of 1.0 ng·mL-1 for the analytes. The intra- and interday assay variability was less than 15% for all analytes. The mean extraction recoveries and matrix effect of analytes and IS from rats plasma were all more than 85.0%. The stability results showed the measured concentration for six analytes at three QC levels deviated within 15.0%. The results indicated that significant differences in the pharmacokinetic parameters of the analytes were observed between the two groups of animals, whereby the absorptions of these analytes in the diabetic group were all significantly higher than those in the normal group, which provides an experimental basis for the role of Maydis stigma in anti-diabetic treatment.


Assuntos
Diabetes Mellitus Experimental/sangue , Flavonoides , Extratos Vegetais , Plantas Medicinais/química , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/farmacologia , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Ratos
10.
Artigo em Inglês | MEDLINE | ID: mdl-26319304

RESUMO

Epigallocatechin-3-gallate (EGCG) is a major bioactive ingredient of green tea that produces beneficial neuroprotective effects. In this paper, to optimize the EGCG enrichment, thirteen macroporous resins with different chemical and physical properties were systemically evaluated. Among the thirteen tested resins, the H-bond resin HPD826 exhibited best adsorption/desorption capabilities and desorption ratio, as well as weakest affinity for caffeine. The absorption of EGCG on the HPD826 resin followed the pseudo-second-order kinetics and Langmuir isotherm model. The separation parameters of EGCG were optimized by dynamic adsorption/desorption experiments with the HPD826 resin column. Under the optimal condition, the content of EGCG in the 30% ethanol eluent increased by 5.8-fold from 7.7% to 44.6%, with the recovery yield of 72.1%. After further purification on a polyamide column, EGCG with 74.8% purity was obtained in the 40-50% ethanol fraction with a recovery rate of 88.4%. In addition, EGCG with 95.1% purity could be easily obtained after one-step crystallization in distilled water. Our study suggests that the combined macroporous resin and polyamide column chromatography is a simple method for large-scale separation and purification of EGCG from natural plants for food and pharmaceutical applications.


Assuntos
Catequina/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Nylons/química , Chá/química , Adsorção , Catequina/isolamento & purificação , Cinética , Termodinâmica
11.
Pharmacol Biochem Behav ; 106: 57-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23541491

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid ß (Aß) deposits, elevated oxidative stress, and apoptosis of the neurons. Pseudoginsenoside-F11 (PF11), a component of Panax quinquefolium (American ginseng), has been demonstrated to antagonize the learning and memory deficits induced by scopolamine, morphine and methamphetamine in mice. In the present study, we investigated the effect of PF11 on AD-like cognitive impairment both in mice induced by intracerebroventricular injection of Aß1-42 (410 pmol) and in Tg-APPswe/PS1dE9 (APP/PS1) mice. It was found that oral treatment with PF11 significantly mitigated learning and memory impairment in mice given Aß1-42-treated mice for 15 days at doses of 1.6 and 8 mg/kg and APP/PS1 for 4 weeks at a dose of 8 mg/kg as measured by the Morris water maze and step-through tests. In APP/PS1 mice, PF11 8 mg/kg significantly inhibited the expressions of ß-amyloid precursor protein (APP) and Aß1-40 in the cortex and hippocampus, restored the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the production of malondialdehyde (MDA) in the cortex. It also noticeably improved the histopathological changes in the cortex and hippocampus and downregulated the expressions of JNK 2, p53 and cleaved caspase 3 in the hippocampus. These findings suggested that the inhibitory effect on amyloidogenesis and oxidative stress and some beneficial effects on neuronal functions might contribute to the recognition improvement effect of PF11 in APP/PS1 mice. Cumulatively, the present study indicated that PF11 may serve as a potential therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Modelos Animais de Doenças , Ginsenosídeos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Caspase 3/metabolismo , Feminino , Ginsenosídeos/farmacologia , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto , Camundongos , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Zhong Yao Cai ; 35(10): 1641-4, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23627134

RESUMO

OBJECTIVE: To study the effect and mechanism of (-)-Epigallocatechin-3-gallate (EGCG) on the degeneretive changes of the brain in Alzheimer's disease (AD) model mice induced with chemical drugs. METHODS: AD model mice were established by subcutaneously injecting with 3% D-gal at the dose of 150 mg/kg body weight once daily for 6 weeks. From the third week, the mice of D-gal + V(E) 280 U/kg group, D-gal + EGCG 2 mg/(kg x d) group and D-gal + EGCG 6 mg/(kg x d) group were intragastricly given with 5.6% V(E) at the dose of 280 IU/kg and EGCG at the dose of 2 mg/kg x d or 6 mg/kg x d respectively after injection of D-gal. The mice of control group, D-gal + dd H2O group and D-gal + oil group were administered with same volume vehicle distilled water and soybean oil respectively. The pathological changes of the brain in AD model mice were observed by HE staining analysis, the immunohistochemical analysis of beta-amyloid (Abeta) and evaluating the expression of amyloid precursor protein (APP) in the hippocampus of mice by Western blot analysis. RESULTS: EGCG 2 mg/(kg x d) or 6 mg/(kg x d) 4 weeks, ig evidently released neuronal injury in the hippocampus of the AD mice induced by D-gal, and significantly reduced the express of Abeta and APP in the hippocampus of AD model mice induced by D-gal (P < 0.01). CONCLUSION: EGCG has a protective effect on AD model mice induced by D-gal by decreasing the expression of APP and beta-Amyloid in the hippocampus of mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/efeitos dos fármacos , Catequina/análogos & derivados , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catequina/administração & dosagem , Catequina/farmacologia , Modelos Animais de Doenças , Feminino , Galactose/administração & dosagem , Galactose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fitoterapia , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA