Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118158, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY: This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS: A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS: TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCß], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCß, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION: Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.


Assuntos
Doença das Coronárias , Fibrinolíticos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Trichosanthes , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Fibrinolíticos/química , Doença das Coronárias/tratamento farmacológico , Ratos , Masculino , Trichosanthes/química , Peixe-Zebra , Ratos Sprague-Dawley , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Medicina Tradicional Chinesa/métodos
2.
Environ Toxicol ; 39(7): 3872-3882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558324

RESUMO

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.


Assuntos
Senescência Celular , Doxorrubicina , Mitocôndrias , Extratos Vegetais , Espécies Reativas de Oxigênio , Cordão Umbilical , Humanos , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/efeitos dos fármacos , Cordão Umbilical/citologia , Cordão Umbilical/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doxorrubicina/toxicidade , Doxorrubicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platycodon/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Cultivadas
3.
Exp Anim ; 73(3): 246-258, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38447976

RESUMO

Cardiomyopathy is one of complications related to diabetes. Stem cell transplantation shows potential in diabetic cardiomyopathy treatment. Epigallocatechin-3-gallate (EGCG) is one of the major components found in green tea. Although stem cell transplantation and green tea EGCG supplementation show therapeutic effects on cardiomyopathy, the detailed cellular mechanisms in stem cell transplantation coupled with EGCG treatment remain unclear. This study investigates whether adipose-derived stem cells (ADSC) pretreated with EGCG show better protective effect on diabetic cardiomyopathy than ADSC without EGCG pretreatment. A cell model indicated that ADSC pretreated with EGCG increased cell functions including colony formation, migration and survival markers. All of these functions are blocked by small interfering C-X-C motif chemokine receptor 4 (siCXCR4) administration. These findings suggest that ADSC pretreatment with EGCG increases cell functions through CXCR4 expression. A diabetic animal model was designed to verify the above findings, including Sham, DM (diabetes mellitus), DM+ADSC (DM rats receiving autologous transplantation of ADSC) and DM+E-ADSC (DM rats receiving EGCG pretreated ADSC). Compared to the Sham, we found that all of pathophysiological signalings were activated in the DM group, including functional changes (decrease in ejection fraction and fractional shortening), structural changes (disarray and fibrosis) and molecular changes (increases in apoptotic, fibrotic, hypertrophic markers and decreases in survival and longevity markers). E-ADSC (DM+E-ADSC) transplantation shows significant improvement in the above pathophysiological signalings greater than ADSC (DM+ADSC). Therefore, ADSC pretreated with EGCG may contribute to clinical applications for diabetic patients with cardiomyopathy.


Assuntos
Catequina , Cardiomiopatias Diabéticas , Receptores CXCR4 , Chá , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/administração & dosagem , Cardiomiopatias Diabéticas/terapia , Chá/química , Receptores CXCR4/metabolismo , Masculino , Tecido Adiposo/citologia , Ratos Sprague-Dawley , Transplante Autólogo , Ratos , Transplante de Células-Tronco , Modelos Animais de Doenças , Células-Tronco , Regeneração/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia
4.
J Agric Food Chem ; 72(13): 7438-7456, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513720

RESUMO

Aristolochic acid analogues (AAAs) are well-known toxins. We performed the first comprehensive screening on AAAs in Asari Radix et Rhizoma (underground part of Asarum heterotropoides Schmidt), the only Aristolochiaceae plant widely used in clinical practice. LC-HRMS revealed 70 trace AAAs using polygonal mass defect filtering and precursor ion list strategies, 38 of which were newly discovered in A. heterotropoides. UHPLC-QTrap-MS/MS was then utilized for quantitative/semiquantitative analysis of 26 abundant compounds. Seventeen AAAs were detected from 91 batches of A. heterotropoides and 20 AAAs from 166 consumable products. For 141 Asari-containing proprietary products, aristolactam I and aristolactam II-glucoside exhibited the widest distribution, present in 98% products. AA IVa was the most abundant, detected in 91%. Notably, 60% of the products contained AA I (0.03-0.79 ppm). The safety was assessed using linear extrapolation, permitted daily exposure, cumulative amount, and the margin of exposure. It is recommended that AA I content be limited to 3 ppm.


Assuntos
Ácidos Aristolóquicos , Medicamentos de Ervas Chinesas , Rizoma , Espectrometria de Massas em Tandem , Medição de Risco
5.
Tzu Chi Med J ; 36(1): 1-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406577

RESUMO

Traditional Chinese medicine (TCM) has gained considerable attention over the past few years for its multicomponent, multitarget, and multi-pathway approach to treating different diseases. Studies have shown that TCMs as adjuvant therapy along with conventional treatment may benefit in safely treating various disorders. However, investigations on finding effective herbal combinations are ongoing. A novel TCM formula, "Jing Si Herbal Tea (JSHT)," has been reported recently for their health-promoting effects in improving overall body and mental health. JSHT is a combination of eight herbs recognized in Chinese herbal pharmacopoeia for their anti-viral, anti-aging, and anti-cancer properties as well as protective effects against cardiovascular, metabolic, neural, digestive, and genitourinary diseases. Thus, to better understand the beneficial effects of the ingredients of JSHT on health, this review intends to summarize the preclinical and clinical studies of the ingredients of JSHT on human health and diseases, and possible therapeutic effects with the related mode of actions and future prospects for their application in complementary therapies.

6.
J Ethnopharmacol ; 325: 117869, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342153

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY: The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS: The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS: The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1ß, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1ß, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION: Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1ß, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Humanos , Animais , Ratos , Apigenina , Luteolina/farmacologia , Luteolina/uso terapêutico , Peróxido de Hidrogênio , Interleucina-6 , Ácido Linoleico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Quercetina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Doença das Coronárias/tratamento farmacológico , Interleucina-1beta , Fenilalanina
7.
J Cosmet Dermatol ; 23(3): 1055-1065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37974526

RESUMO

BACKGROUND: Cosmetic care products contain a high proportion of water and nutrients. Therefore, preventing bacterial growth is an important issue to ensure product quality and safety. The application of antibacterial natural ingredients derived from plants is considered to have the potential to maintain product quality and reduce the use of chemicals in formulations. Additionally, chemically synthesized antiseptic and antibacterial agents are widely used in the industry at present. However, some preservative ingredients have been reported that may cause skin irritation, redness, allergies, and even dermatitis. AIMS: This study aimed to prepare extract from Camellia oleifera tea seed dregs (CTSD), investigate the antibacterial effects on two pathogenic bacteria and evaluate the product preservative ability. METHODS: Ethanol extraction was prepared and subjected to characterize their triterpenoid contents. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) were determined for Pseudomonas aeruginosa and Staphylococcus aureus. The product's stability and preservative qualities, along with its ability to scavenge free radicals through antioxidant activity, were also assessed. RESULTS: The gram-positive S. aureus showed greater susceptibility to the treatment. In additional, CTSD possessed significant free radical scavenging activity in vitro and cultured normal human skin fibroblast CCD-966SK cells under nontoxic concentration. The challenge test and accelerated storage test confirmed the CTSD containing formulated emulsion is eligible for commercialization. CONCLUSIONS: CTSD has the potential to be developed as an alternative agent to control microbial biofilm formation, or can be used as an adjuvant compound for infectious disease control.


Assuntos
Camellia , Cosméticos , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Sementes/química , Conservantes Farmacêuticos/farmacologia , Cosméticos/farmacologia , Biofilmes , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
8.
Phytomedicine ; 123: 155228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006808

RESUMO

BACKGROUND: Fritillaria Bulbus (FB), a precious medicinal herb renowned for its heat-clearing, lung-moistening, cough-relieving and phlegm-eliminating effects. In pursuit of profits, unscrupulous merchants have engaged in the substitution or adulteration of valuable varieties with cheaper alternatives. It is, therefore, urgent to develop effective technical approaches to identify FBs from adulterants. METHODS: This paper employed infrared spectroscopy (IR), thin layer chromatography-image analysis (TLC-IA), and untargeted metabolomics techniques to discriminate ten species of FBs. RESULTS: Five species of FBs were successfully differentiated using mid-infrared spectroscopy. Furthermore, the power of TLC-IA technology allowed the differentiation of five species of FBs and two origins of FCBs (Fritillariae Cirrhosae Bulbus). Remarkably, through the application of untargeted metabolomics technique, the precise discrimination of five species of FBs, as well as three origins of FCBs were accomplished. Moreover, a comprehensive identification of 101 markers that reliably distinguished diverse FBs was achieved through the employment of untargeted metabolomics technique. CONCLUSION: The investigation presented powerful means of detection for assuring the quality control of Fritillaria herbs.


Assuntos
Fritillaria , Plantas Medicinais , Fritillaria/química , Cromatografia em Camada Fina , Plantas Medicinais/química , Controle de Qualidade , Análise Espectral , Metabolômica
9.
Materials (Basel) ; 16(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068014

RESUMO

Mineral trioxide aggregates (MTA) are commonly used as endodontic filling materials but suffer from a long setting time and tooth discoloration. In the present study, the feasibility of using barium titanate (BTO) for discoloration and a calcium chloride (CaCl2) solution to shorten the setting time was investigated. BTO powder was prepared using high-energy ball milling for 3 h, followed by sintering at 700-1300 °C for 2 h. X-ray diffraction was used to examine the crystallinity and crystalline size of the as-milled and heat-treated powders. MTA-like cements were then prepared using 20-40 wt.% BTO as a radiopacifier and solidified using a 0-30% CaCl2 solution. The corresponding radiopacity, diametral tensile strength (DTS), initial and final setting times, and discoloration performance were examined. The experimental results showed that for the BTO powder prepared using a combination of mechanical milling and heat treatment, the crystallinity and crystalline size increased with the increasing sintering temperature. The BTO sintered at 1300 °C (i.e., BTO-13) exhibited the best radiopacity and DTS. The MTA-like cement supplemented with 30% BTO-13 and solidified with a 10% CaCl2 solution exhibited a radiopacity of 3.68 ± 0.24 mmAl and a DTS of 2.54 ± 0.28 MPa, respectively. In the accelerated discoloration examination using UV irradiation, the color difference was less than 1.6 and significantly lower than the clinically perceptible level (3.7). This novel MTA exhibiting a superior color stability, shortened setting time, and excellent biocompatibility has potential for use in endodontic applications.

10.
Aging (Albany NY) ; 15(17): 9167-9181, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708248

RESUMO

Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine (CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays, respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague Dawley (SD) rats. Our results indicated that JS at doses below 100 µg/mL had less cytotoxicity in hADSC and JS-preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardioprotective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative therapy.


Assuntos
Coração , Células-Tronco , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Doxorrubicina/toxicidade , Cardiomegalia
11.
Phytother Res ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697721

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the main cause of chronic liver disease. Baicalin (Bai), a bioactive molecule found in Scutellaria baicalensis Georgi, possesses antioxidant and antiinflammatory properties. These activities suggest Bai could be a promising therapeutic agent against NAFLD; however, its specific effects and underlying mechanism are still not clear. This study aims to explore the effect of Bai to attenuate MAFLD and associated molecular mechanisms. Bai (50, 100 or 200 mg/kg) was orally administered to db/db mice with MAFLD for 4 weeks or db/m mice as the normal control. Bai markedly attenuated lipid accumulation, cirrhosis and hepatocytes apoptosis in the liver tissues of MAFLD mice, suggesting strong ability to attenuate MAFLD. Bai significantly reduced proinflammatory biomarkers and enhanced antioxidant enzymes, which appeared to be modulated by the upregulated p62-Keap1-Nrf2 signalling cascade; furthermore, cotreatment of Bai and all-trans-retinoic acid (Nrf2 inhibitor) demonstrated markedly weakened liver protective effects by Bai and its induced antioxidant and antiinflammatory responses. The present study supported the use of Bai in attenuating MAFLD as a promising therapeutic agent, and its strong mechanism of action in association with the upregulating the p62-keap1-Nrf2 pathway.

12.
Environ Toxicol ; 38(12): 3026-3042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661764

RESUMO

Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1ß, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.


Assuntos
Artemisia , Cardiotoxicidade , Extratos Vegetais , Animais , Ratos , Apoptose , Artemisia/química , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismo
13.
Chem Biol Drug Des ; 102(6): 1399-1408, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37612133

RESUMO

Trauma-hemorrhagic shock (THS) is a medical emergency that is encountered by physicians in the emergency department. Chuan Xiong is a traditional Chinese medicine and ligustrazine is a natural compound from it. Ligustrazine improves coronary blood flow and reduces cardiac ischemia in animals through Ca2+ and ATP-dependent vascular relaxation. It also decreases the platelets' bioactivity and reduces reactive oxygen species formation. We hypothesized that ligustrazine could protect liver by decreasing the inflammation response, protein production, and apoptosis in THS rats. Ligustrazine at doses of 100 and 1000 µg/mL was administrated in Kupffer cells isolated from THS rats. The protein expressions were detected via western blot. The THS showed increased inflammation response proteins, mitochondria-dependent apoptosis proteins, and had a compensation effect on the Akt pathway. After ligustrazine treatment, the hemorrhagic shock Kupffer cells decreased inflammatory response and mitochondria-dependent apoptosis and promoted a more compensative effect of the Akt pathway. It suggests ligustrazine reduces inflammation response and mitochondria-dependent apoptosis induced by THS in liver Kupffer cells and promotes more survival effects by elevating the Akt pathway. These findings demonstrate the beneficial effects of ligustrazine against THS-induced hepatic injury, and ligustrazine could be a potential medication to treat the liver injury caused by THS.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Choque Hemorrágico , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Choque Hemorrágico/tratamento farmacológico , Células de Kupffer/metabolismo , Fígado/metabolismo , Inflamação/tratamento farmacológico
14.
Front Pharmacol ; 14: 1125414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416063

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a challenge for public health globally since transmission of different variants of the virus does not seem to be effectively affected by the current treatments and vaccines. During COVID-19 the outbreak in Taiwan, the patients with mild symptoms were improved after the treatment with NRICM101, a traditional Chinese medicine formula developed by our institute. Here, we investigated the effect and mechanism of action of NRICM101 on improval of COVID-19-induced pulmonary injury using S1 subunit of the SARS-CoV-2 spike protein-induced diffuse alveolar damage (DAD) of hACE2 transgenic mice. The S1 protein induced significant pulmonary injury with the hallmarks of DAD (strong exudation, interstitial and intra-alveolar edema, hyaline membranes, abnormal pneumocyte apoptosis, strong leukocyte infiltration, and cytokine production). NRICM101 effectively reduced all of these hallmarks. We then used next-generation sequencing assays to identify 193 genes that were differentially expressed in the S1+NRICM101 group. Of these, three (Ddit4, Ikbke, Tnfaip3) were significantly represented in the top 30 enriched downregulated gene ontology (GO) terms in the S1+NRICM101 group versus the S1+saline group. These terms included the innate immune response, pattern recognition receptor (PRR), and Toll-like receptor signaling pathways. We found that NRICM101 disrupted the interaction of the spike protein of various SARS-CoV-2 variants with the human ACE2 receptor. It also suppressed the expression of cytokines IL-1ß, IL-6, TNF-α, MIP-1ß, IP-10, and MIP-1α in alveolar macrophages activated by lipopolysaccharide. We conclude that NRICM101 effectively protects against SARS-CoV-2-S1-induced pulmonary injury via modulation of the innate immune response, pattern recognition receptor, and Toll-like receptor signaling pathways to ameliorate DAD.

15.
Am J Chin Med ; 51(5): 1211-1232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335210

RESUMO

Cardiovascular diseases in post-menopausal women are on a rise. Oxidative stress is the main contributing factor to the etiology and pathogenesis of cardiovascular diseases. Diosgenin, a member of steroidal sapogenin, is structurally similar to estrogen and has been shown to have antioxidant effects. Therefore, we aimed to investigate the effects of diosgenin in preventing oxidation-induced cardiomyocyte apoptosis and assessed its potential as a substitute substance for estrogen in post-menopausal women. Apoptotic pathways and mitochondrial membrane potential were measured in H9c2 cardiomyoblast cells and neonatal cardiomyocytes treated with diosgenin for 1[Formula: see text]h prior to hydrogen peroxide (H2O2) stimulation. H2O2-stimulated H9c2 cardiomyoblast cells displayed cytotoxicity and apoptosis via the activation of both Fas-dependent and mitochondria-dependent pathways. Additionally, it led to the instability of the mitochondrial membrane potential. However, the H2O2-induced H9c2 cell apoptosis was rescued by diosgenin through IGF1 survival pathway activation. This led to the recovery of the mitochondrial membrane potential by suppressing the Fas-dependent and mitochondria-dependent apoptosis. Diosgenin also inhibited H2O2-induced cytotoxicity and apoptosis through the estrogen receptor interaction with PI3K/Akt and extracellular regulated protein kinases 1/2 activation in myocardial cells. In this study, we confirmed that diosgenin attenuated H2O2-induced cytotoxicity and apoptosis through estrogen receptors-activated phosphorylation of PI3K/Akt and ERK signaling pathways in myocardial cells via estrogen receptor interaction. All results suggest that H2O2-induced myocardial damage is reduced by diosgenin due to its interaction with estrogen receptors to decrease the damage. Herein, we conclude that diosgenin might be a potential substitute substance for estrogen in post-menopausal women to prevent heart diseases.


Assuntos
Doenças Cardiovasculares , Diosgenina , Recém-Nascido , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/toxicidade , Diosgenina/farmacologia , Estresse Oxidativo , Apoptose , Estrogênios/metabolismo , Estrogênios/farmacologia , Miócitos Cardíacos/metabolismo
16.
Phytother Res ; 37(9): 3964-3981, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186468

RESUMO

Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-ß activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Fator de Crescimento Insulin-Like II , Ratos , Animais , Cardiotoxicidade/tratamento farmacológico , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like II/farmacologia , Fator de Crescimento Insulin-Like II/uso terapêutico , Receptores de Estrogênio/metabolismo , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Miócitos Cardíacos , Apoptose
17.
J Pharm Biomed Anal ; 232: 115328, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37149947

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino is an herbaceous plant of Cucurbitaceae family, which has been widely used as an herbal tea and traditional Chinese medicine. Since its saponins are similar to ginsenosides and have a wide range of activities, it has attracted wide interest. However, there are still a large number of unknown saponins that have not been isolated, especially some trace gypenosides. In the present study, a HILIC × RP offline two-dimensional liquid separation combined with a multimode data acquisition was developed for the systematical characterization of gypenosides. On top of the negative mode information, considering that saponins are prone to in-source fragmentations in positive ion mode, a precursor ion list data acquisition method was used for the targeted acquisition of multistage positive data. Reference herbal drug was taken as a golden sample to probe the chemical composition of G. pentaphyllum. The mixed sample of commercially available samples were also analyzed in parallel. Furthermore, the chemical compositions of commercially available samples from different sources were compared. In total, 1108 saponins were characterized, among which 588 were accurately characterized, with 574 identified in the reference herbal drug and 700 in the mixed commercially available samples. The commercially available samples showed great composition variation. These findings clarified the material basis and provided clues for quality control of G. pentaphyllum.


Assuntos
Medicamentos de Ervas Chinesas , Saponinas , Gynostemma/química , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/química , Saponinas/química
18.
Light Sci Appl ; 12(1): 84, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009809

RESUMO

Silicon photonic integration has gained great success in many application fields owing to the excellent optical device properties and complementary metal-oxide semiconductor (CMOS) compatibility. Realizing monolithic integration of III-V lasers and silicon photonic components on single silicon wafer is recognized as a long-standing obstacle for ultra-dense photonic integration, which can provide considerable economical, energy-efficient and foundry-scalable on-chip light sources, that has not been reported yet. Here, we demonstrate embedded InAs/GaAs quantum dot (QD) lasers directly grown on trenched silicon-on-insulator (SOI) substrate, enabling monolithic integration with butt-coupled silicon waveguides. By utilizing the patterned grating structures inside pre-defined SOI trenches and unique epitaxial method via hybrid molecular beam epitaxy (MBE), high-performance embedded InAs QD lasers with monolithically out-coupled silicon waveguide are achieved on such template. By resolving the epitaxy and fabrication challenges in such monolithic integrated architecture, embedded III-V lasers on SOI with continuous-wave lasing up to 85 °C are obtained. The maximum output power of 6.8 mW can be measured from the end tip of the butt-coupled silicon waveguides, with estimated coupling efficiency of approximately -6.7 dB. The results presented here provide a scalable and low-cost epitaxial method for the realization of on-chip light sources directly coupling to the silicon photonic components for future high-density photonic integration.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36743461

RESUMO

Objective: The aim of this study is to evaluate the clinical efficacy of Tongxinluo capsules in preventing coronary restenosis based on meta-analysis and network pharmacology research methods and to preliminarily explore its intervention mechanism. Methods: First, through meta-analysis, we comprehensively searched databases such as CNKI, Wanfang, PubMed, the Cochrane Library, and Web of Science to find out the randomized controlled trials of Tongxinluo capsules in the treatment of coronary restenosis until February, 2022. According to the Cochrane Library, risk bias assessment tools were used to evaluate the included literature and Review Manager 5.2 software was used to conduct statistical analysis of the included studies. Then, based on network pharmacology, through TCMSP database and BATMAN-TCM database screening, the chemical components of Tongxinluo capsules and their related effects, symptom, and common targets were analyzed. String net was used to construct protein-protein interaction (PPI) network, and R3.6.1 software was used to carry out GO biological process enrichment analysis and KEGG signaling pathway enrichment analysis to clarify key pathways. Results: The meta-analysis finally included 10 RCTs with a total of 1318 subjects. Meta-analysis results showed that Tongxinluo capsules combined with conventional cardiovascular drugs could significantly improve the clinical efficacy of preventing in-stent restenosis and the clinical efficacy of preventing angina pectoris. There was no significant difference in the clinical efficacy of preventing myocardial infarction. Network pharmacology obtained a total of 101 chemical components and 149 targets through the online database. The results of network analysis showed that the targets were mainly involved in receptor ligand activity, carboxylic acid binding, steroid hormone receptor activity, and other related action pathways and were also involved in AGE-RAGE signaling pathway, cell senescence signaling pathway, and other related pathways. Conclusion: Tongxinluo capsules combined with conventional cardiovascular drugs can improve the clinical efficacy of preventing in-stent restenosis and angina pectoris and have a significant effect on reducing inflammatory factors. The comprehensive result of the effect is mainly through the participation of receptor ligand activity, carboxylic acid binding, steroid hormone receptor activity, and other ways to achieve the purpose of treating coronary restenosis.

20.
Neuroendocrinology ; 113(1): 80-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36030776

RESUMO

INTRODUCTION: Fat mass and obesity-associated (FTO) gene is strongly associated with obesity which brings a major health threat. Altered expression of its encoded protein FTO in the hypothalamus has been identified to contribute to central control of appetite and body weight. However, its molecular mechanisms remain elusive. METHODS: Mouse hypothalamic POMC cell line N43/5 was treated with FTO inhibitor rhein, FTO shRNA, or extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 to inhibit FTO or ERK1/2. Rhein and U0126 were injected into lateral ventricle of the mice by intracerebroventricular cannulation. Western blotting and immunofluorescent assays were performed to monitor protein level. RESULTS: This study identified that inhibition of FTO in N43/5 cells led to phosphorylation of signal transducer and activator of transcription 3 (STAT3) at S727 site and induced p-STAT3-S727 nuclear translocation. We further showed that FTO inhibition promoted phosphorylation of ERK1/2; specific inhibition of ERK1/2 signaling by U0126 could abolish the effect of FTO inhibition on STAT3-S727 phosphorylation and nuclear translocation. Furthermore, we found that inhibition of hypothalamic FTO promoted STAT3-S727 phosphorylation in the hypothalamic arcuate nucleus, and the mice showed reductions in food intake and body weight. In addition, inhibition of hypothalamic ERK1/2 could abolish the effects of FTO inhibition on STAT3-S727 phosphorylation, reductions of food intake and body weight. CONCLUSION: Our in vitro and in vivo data suggest that the inhibition of hypothalamic FTO could activate STAT3 through ERK1/2, which is potentially associated with reductions in food intake and body weight.


Assuntos
Sistema de Sinalização das MAP Quinases , Fator de Transcrição STAT3 , Camundongos , Animais , Fator de Transcrição STAT3/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Hipotálamo/metabolismo , Peso Corporal , Obesidade/metabolismo , Ingestão de Alimentos , Fosforilação , Leptina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA