Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479258

RESUMO

BACKGROUND: The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE: This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS: In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS: APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION: APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.


Assuntos
Astrágalo , Ácidos Graxos Insaturados , Fluoruracila , Microbioma Gastrointestinal , Polissacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Camundongos , Astrágalo/química , Ácidos Graxos Insaturados/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos
2.
Zhen Ci Yan Jiu ; 47(6): 497-503, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35764516

RESUMO

OBJECTIVE: To investigate the protective effect of electroacupuncture (EA) at "Zusanli"(ST36)and "Weiwanxiashu"(EX-B3) on capillary function around the renal tubule and renal tubule structure in diabetic mice based on two-photon microscopy (TPM) imaging, so as to providing visualizable evidence for the regulatory effect of EA on diabetic renal vascular microcirculation. METHODS: Spontaneous type Ⅱ diabetes mellitus mice (db/db) were employed for this study. Twenty db/db mice were randomly divided into model group (n=10) and EA group (n=10), and 10 db/m mice used as the control group. EA was applied to bilateral ST36 and EX-B3 for 20 min/time, 6 times a week for 6 weeks. The body weight was recorded and the fasting blood glucose measured before and after the intervention. The urine production and water consumption of mice in each cage were recorded after EA. The renal in vivo imaging method based on TPM was established to display the morphological structure of renal tubules, and the mouse renal blood flow velocity was detected by injecting 500 kDa dextran-fluorescein into femoral vein after the intervention. RESULTS: Compared with the control group, the proportion of mice with decreased body mass in the model group was increased, accounting for 40%, while that in the control group was 0%; and fasting blood glucose, urine production and water consumption were significantly increased in the model group (P<0.001, P<0.000 1). A renal in vivo imaging method based on TPM was successfully established, which can be applied to quantitatively analyze the renal blood flow and renal tubular diameter of mice. Based on this method, the results showed that compared with the control group, the blood flow velocity of peritubular capillary in the model group was significantly decreased (P<0.000 1, P<0.001), renal tubular cells were slightly exfoliated and the diameter of renal tubular was significantly increased (P<0.000 1). Compared with the model group, EA reduced the body weight loss ratio from 40% to 0%, and significantly decreased the fasting blood glucose, urine production and water consumption (P<0.01, P<0.000 1, P<0.001), and the blood flow velocity of peritubular capillary in the EA group was significantly increased (P<0.001, P<0.05) and tubule dilatation significantly alleviated (P<0.0 1). CONCLUSION: EA at ST36 and EX-B3 can ameliorate renal vascular microcirculation disorder to relieve the renal structure damage and improve renal function in diabetes mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Eletroacupuntura , Animais , Glicemia , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/terapia , Camundongos , Microcirculação , Microscopia
3.
Autophagy ; 17(11): 3833-3847, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33622188

RESUMO

Alzheimer disease (AD) is the most prevalent neurodegenerative disorder leading to dementia in the elderly. Unfortunately, no cure for AD is available to date. Increasing evidence has proved the roles of misfolded protein aggregation due to impairment of the macroautophagy/autophagy-lysosomal pathway (ALP) in the pathogenesis of AD, and thus making TFEB (transcription factor EB), which orchestrates ALP, as a promising target for treating AD. As a complementary therapy, acupuncture or electroacupuncture (EA) has been commonly used for treating human diseases. Although the beneficial effects of acupuncture for AD have been primarily studied both pre-clinically and clinically, the real efficacy of acupuncture on AD remains inconclusive and the underlying mechanisms are largely unexplored. In this study, we demonstrated the cognitive-enhancing effect of three-needle EA (TNEA) in an animal model of AD with beta-amyloid (Aß) pathology (5xFAD). TNEA reduced APP (amyloid beta (A4) precursor protein), C-terminal fragments (CTFs) of APP and Aß load, and inhibited glial cell activation in the prefrontal cortex and hippocampus of 5xFAD. Mechanistically, TNEA activated TFEB via inhibiting the AKT-MAPK1-MTORC1 pathway, thus promoting ALP in the brains. Therefore, TNEA represents a promising acupuncture therapy for AD, via a novel mechanism involving TFEB activation.Abbreviations Aß: ß-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; AKT1: thymoma viral proto-oncogene 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta (A4) precursor protein; BACE1: beta-site APP cleaving enzyme 1; CQ: chloroquine; CTFs: C-terminal fragments; CTSD: cathepsin D; EA: electroacupuncture; FC: fear conditioning; GFAP: glial fibrillary acidic protein; HI: hippocampus; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPT: microtubule-associated protein tau; MTORC1: mechanistic target of rapamycin kinase complex 1; MWM: Morris water maze; NFT: neurofibrillary tangles; PFC: prefrontal cortex; PSEN1: presenilin 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TNEA: three-needle electroacupuncture.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/terapia , Eletroacupuntura , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Eletroacupuntura/métodos , Feminino , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Teste do Labirinto Aquático de Morris
4.
Medicine (Baltimore) ; 99(31): e20871, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32756079

RESUMO

BACKGROUND: Painful diabetic neuropathy (PDN) is one of the main and severe complications of diabetic patients, which not only accelerates the occurrence of ulcers of diabetic foot and amputation of lower extremities but also severely affects the quality of life. It is common that vitamin D deficiency in diabetic patients and especially in these patients diagnosed with diabetic peripheral neuropathy. Previous studies have proved that there is an apparent vitamin D deficiency in PDN patients, and vitamin D supplementation can effectively improve patients' pain symptoms and neurologic function. However, the evidence of these studies is unconvincing. Therefore, our research objective is to explore the effectiveness and security of vitamin D supplements on PDN. METHODS: We will include randomized controlled trials on vitamin D supplementation in the treatment of PDN. And we will retrieve 8 electronic databases concerning this theme. The English databases mainly retrieve PubMed, Web of Science, Embase, and the Cochrane Library, while CNKI, VIP, CBM, and Wanfang database will be used to retrieve the Chinese Literature. There is no definite time limit for retrieval literatures, and the languages will be limited to Chinese and English. Besides, some clinical registration tests and gray literatures are also researched by us. The primary outcomes of our study are the amelioration of pain symptoms and assessment of peripheral nerve function. And some changes of biochemical indicators including fasting blood glucose, 2 hours postprandial blood glucose, glycosylated hemoglobin, calcium, and serum vitamin D level from preintervention and postintervention, adverse events will be regarded as secondary outcomes. The Review Manager RevMan5.3 will be used for meta-analysis of studies are included. RESULTS: In this systematic review and meta-analysis, higher quality data evidence on vitamin D supplementation for PDN will be provided. CONCLUSION: Our study will eventually provide a proof of the efficacy and safety of vitamin D supplementation in patients with PDN, and to add a new option for the prevention and treatment of PDN patients. INPLASY REGISTRATION NUMBER: INPLASY202050065.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Suplementos Nutricionais , Vitamina D/uso terapêutico , Neuropatias Diabéticas/etiologia , Humanos , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Metanálise como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA