Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Med ; 45(3): 753-768, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31985023

RESUMO

Influenza viruses often pose a serious threat to animals and human health. In an attempt to explore the potential of herbal medicine as a treatment for influenza virus infection, eleutheroside B1, a coumarin compound extracted from herba sarcandrae, was identified, which exhibited antiviral and anti­inflammatory activities against influenza A virus. In this study, high­throughput RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) assays were performed to determine alterations in the non­coding RNA (ncRNA) transcriptome and proteomics. Bioinformatics and target prediction analyses were used to decipher the potential roles of altered ncRNAs in the function of eleutheroside B1. Furthermore, long ncRNA (lncRNA) and mRNA co­expressing networks were constructed to analyze the biological functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The analysis of RNA sequencing data revealed that 5 differentially expressed ncRNAs were upregulated and 3 ncRNAs were downregulated in the A549 cells infected with A/PR8/34/H1N1, with or without eleutheroside B1 treatment (PR8+eleu and PR8, respectively). Nuclear paraspeckle assembly transcript 1 (NEAT1) was differentially expressed between the PR8 and A549 cell groups. GO and KEGG pathway analyses indicated that eleutheroside B1 took advantage of the host cell biological processes and molecular function for its antiviral and anti­inflammatory activities, as well as for regulating cytokine­cytokine receptor interaction in the immune system, consistent with previous findings. The results of the iTRAQ assays indicated that L antigen family member 3 (LAGE3) protein, essential for tRNA processing, tRNA metabolic processes and ncRNA processing, was downregulated in the PR8+eleu compared with the PR8 group. In the present study, these comprehensive, large­scale data analysis enhanced the understanding of multiple aspects of the transcriptome and proteomics that are involved in the antiviral and anti­inflammatory activities of eleutheroside B1. These findings demonstrate the potential of eleutheroside B1 for use in the prevention and treatment of influenza A virus­mediated infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A/patogenicidade , Extratos Vegetais/farmacologia , RNA não Traduzido/metabolismo , Células A549 , Western Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Eleutherococcus , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos
2.
J Cell Mol Med ; 24(6): 3303-3313, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965715

RESUMO

Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti-cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL-induced osteoclast formation and resorbed pits of hydroxyapatite-coated plate in a dose-dependent manner. D.P also disrupted the formation of intact actin-rich podosome structures in mature osteoclasts and inhibited osteoclast-specific gene and protein expressions. Further, D.P was able to suppress RANKL-activated JNK, NF-κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast-related conditions.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Osteólise Essencial/tratamento farmacológico , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/antagonistas & inibidores , Osteólise Essencial/patologia , Podossomos/fisiologia , Ligante RANK/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo
3.
Blood ; 114(17): 3662-7, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19528533

RESUMO

Protein Z (PZ) binds to PZ-dependent inhibitor (ZPI) and accelerates the inhibition of the coagulation protease, activated factor X (FXa), in the presence of phospholipids and Ca2+. A 2.3A resolution crystal structure of PZ complexed with ZPI shows that ZPI is a typical serine protease inhibitor and that PZ has a serine protease fold with distorted oxyanion hole and S1 pocket. The 2 molecules bind with fully complementary surfaces spanning over 2400A(2) and involving extensive ionic and hydrophobic interactions. ZPI has an unusual shutter region with a negatively charged residue buried within the hydrophobic core of the molecule. This unique Asp(213) is critical in maintaining the balanced metastability required for optimal protease inhibition, especially when PZ is bound, with its replacement with Asn resulting in increased thermal stability, but decreased efficiency of protease inhibition. The structure of ZPI shows negatively and positively charged surfaces on top of the molecule, in keeping with mutagenesis studies in this work indicating exosite interactions with FXa when it docks on top of ZPI. As modeled in this study, the gamma-carboxy-glutamic acid-containing domains of PZ and FXa enable them to bind to the same phospholipid surfaces on platelet and other membranes, with optimal proximity for the inhibition of FXa by the complexed ZPI.


Assuntos
Proteínas Sanguíneas/química , Fator X/antagonistas & inibidores , Membranas/metabolismo , Serpinas/química , Sítio Alostérico , Sítios de Ligação , Coagulação Sanguínea , Cálcio/metabolismo , Dicroísmo Circular , Cristalização , Cristalografia por Raios X , Fator Xa/metabolismo , Humanos , Fosfolipídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA