Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vet Intern Med ; 38(3): 1425-1436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38613431

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is increasingly used for gastrointestinal and extra-gastrointestinal diseases in veterinary medicine. However, its effects on immune responses and possible adverse events have not been systematically investigated. HYPOTHESIS/OBJECTIVES: Determine the short-term safety profile and changes in the peripheral immune system after a single FMT administration in healthy dogs. ANIMALS: Ten client-owned, clinically healthy dogs as FMT recipients, and 2 client-owned clinically healthy dogs as FMT donors. METHODS: Prospective non-randomized clinical trial. A single rectal enema of 5 g/kg was given to clinically healthy canine recipients. During the 28 days after FMT administration, owners self-reported adverse events and fecal scores. On Days 0 (baseline), 1, 4, 10, and 28 after FMT, fecal and blood samples were collected. The canine fecal dysbiosis index (DI) was calculated using qPCR. RESULTS: No significant changes were found in the following variables: CBC, serum biochemistry, C-reactive protein, serum cytokines (interleukins [IL]-2, -6, -8, tumor necrosis factor [TNF]-α), peripheral leukocytes (B cells, T cells, cluster of differentiation [CD]4+ T cells, CD8+ T cells, T regulatory cells), and the canine DI. Mild vomiting (n = 3), diarrhea (n = 4), decreased activity (n = 2), and inappetence (n = 1) were reported, and resolved without intervention. CONCLUSIONS AND CLINICAL IMPORTANCE: Fecal microbiota transplantation did not significantly alter the evaluated variables and recipients experienced minimal adverse events associated with FMT administration. Fecal microbiota transplantation was not associated with serious adverse events, changes in peripheral immunologic variables, or the canine DI in the short-term.


Assuntos
Transplante de Microbiota Fecal , Animais , Cães , Transplante de Microbiota Fecal/veterinária , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Masculino , Fezes/microbiologia , Estudos Prospectivos , Citocinas/sangue , Citocinas/metabolismo , Disbiose/veterinária , Disbiose/terapia , Microbioma Gastrointestinal
2.
Sci Rep ; 14(1): 4448, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396015

RESUMO

The objective of this study was to evaluate the impact of dietary zinc supplementation in pre-weaned dairy calves on the phenotypic antimicrobial resistance (AMR) of fecal commensal bacteria. A repository of fecal specimens from a random sample of calves block-randomized into placebo (n = 39) and zinc sulfate (n = 28) groups collected over a zinc supplementation clinical trial at the onset of calf diarrhea, calf diarrheal cure, and the last day of 14 cumulative days of zinc or placebo treatment were analyzed. Antimicrobial susceptibility testing was conducted for Enterococcus spp. (n = 167) and E. coli (n = 44), with one representative isolate of each commensal bacteria tested per sample. Parametric survival interval regression models were constructed to evaluate the association between zinc treatment and phenotypic AMR, with exponentiated accelerated failure time (AFT) coefficients adapted for MIC instead of time representing the degree of change in AMR (MIC Ratio, MR). Findings from our study indicated that zinc supplementation did not significantly alter the MIC in Enterococcus spp. for 13 drugs: gentamicin, vancomycin, ciprofloxacin, erythromycin, penicillin, nitrofurantoin, linezolid, quinupristin/dalfopristin, tylosin tartrate, streptomycin, daptomycin, chloramphenicol, and tigecycline (MR = 0.96-2.94, p > 0.05). In E. coli, zinc supplementation was not associated with resistance to azithromycin (MR = 0.80, p > 0.05) and ceftriaxone (MR = 0.95, p > 0.05). However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR = 0.17, 95% CI 0.03-0.97) and nalidixic acid (MR = 0.28, 95% CI 0.15-0.53) for zinc-treated compared to placebo-treated calves. Alongside predictions of MIC values generated from these 17 AFT models, findings from this study corroborate the influence of age and antimicrobial exposure on phenotypic AMR.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Zinco/farmacologia , Escherichia coli , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Enterococcus , Diarreia/tratamento farmacológico , Diarreia/veterinária , Diarreia/microbiologia , Compostos Orgânicos/farmacologia , Suplementos Nutricionais , Ciprofloxacina/farmacologia
3.
PLoS One ; 15(9): e0239081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925972

RESUMO

Sierra Mixe maize is a geographically remote landrace variety grown on nitrogen-deficient fields in Oaxaca, Mexico that meets its nutritional requirements without synthetic fertilizer by associating with free-living diazotrophs comprising the microbiota of its aerial root mucilage. We selected nearly 500 diazotrophic (N2-fixing) bacteria isolated from Sierra Mixe maize mucilage and sequenced their genomes. Comparative genomic analysis demonstrated that isolates represented diverse genera and composed three major diazotrophic groups based on nitrogen fixation gene content. In addition to nitrogen fixation, we examined deamination of 1-amino-1-cyclopropanecarboxylic acid, biosynthesis of indole-3-acetic acid, and phosphate solubilization as alternative mechanisms of direct plant growth promotion (PGP). Genome mining showed that isolates of all diazotrophic groups possessed marker genes for multiple mechanisms of direct plant growth promotion (PGP). Implementing in vitro assays corroborated isolate genotypes by measuring each isolate's potential to confer the targeted PGP traits and revealed phenotypic variation among isolates based on diazotrophic group assignment. Investigating the ability of mucilage diazotrophs to confer PGP by direct inoculation of clonally propagated potato plants in planta led to the identification of 16 bio-stimulant candidates. Conducting nitrogen-stress greenhouse experiments demonstrated that potato inoculation with a synthetic community of bio-stimulant candidates, as well as with its individual components, resulted in PGP phenotypes. We further demonstrated that one diazotrophic isolate conferred PGP to a conventional maize variety under nitrogen-stress in the greenhouse. These results indicate that, while many diazotrophic isolates from Sierra Mixe maize possessed genotypes and in vitro phenotypes for targeted PGP traits, a subset of these organisms promoted the growth of potato and conventional maize, potentially through the use of multiple promotion mechanisms.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Fixação de Nitrogênio , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia
4.
J Clin Invest ; 123(12): 5319-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24177427

RESUMO

The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.


Assuntos
Autofagia , Coração/crescimento & desenvolvimento , Proteínas Substratos do Receptor de Insulina/fisiologia , Miócitos Cardíacos/metabolismo , Aminoácidos/farmacologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/deficiência , Autofagia/genética , Autofagia/fisiologia , Proteína Beclina-1 , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Coração Fetal/patologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insulina/fisiologia , Proteínas Substratos do Receptor de Insulina/deficiência , Fator de Crescimento Insulin-Like I/fisiologia , Camundongos , Mitocôndrias Cardíacas/fisiologia , Fosforilação Oxidativa , Fosforilação , Processamento de Proteína Pós-Traducional , Receptor IGF Tipo 1/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA