Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Revista
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109764

RESUMO

Metals are essential nutrients that all living organisms acquire from their environment. While metals are necessary for life, excess metal uptake can be toxic; therefore, intracellular metal levels are tightly regulated in bacterial cells. Staphylococcus aureus, a Gram-positive bacterium, relies on metal uptake and metabolism to colonize vertebrates. Thus, we hypothesized that an expanded understanding of metal homeostasis in S. aureus will lead to the discovery of pathways that can be targeted with future antimicrobials. We sought to identify small molecules that inhibit S. aureus growth in a metal-dependent manner as a strategy to uncover pathways that maintain metal homeostasis. Here, we demonstrate that VU0026921 kills S. aureus through disruption of metal homeostasis. VU0026921 activity was characterized through cell culture assays, transcriptional sequencing, compound structure-activity relationship, reactive oxygen species (ROS) generation assays, metal binding assays, and metal level analyses. VU0026921 disrupts metal homeostasis in S. aureus, increasing intracellular accumulation of metals and leading to toxicity through mismetalation of enzymes, generation of reactive oxygen species, or disruption of other cellular processes. Antioxidants partially protect S. aureus from VU0026921 killing, emphasizing the role of reactive oxygen species in the mechanism of killing, but VU0026921 also kills S. aureus anaerobically, indicating that the observed toxicity is not solely oxygen dependent. VU0026921 disrupts metal homeostasis in multiple Gram-positive bacteria, leading to increased reactive oxygen species and cell death, demonstrating the broad applicability of these findings. Further, this study validates VU0026921 as a probe to further decipher mechanisms required to maintain metal homeostasis in Gram-positive bacteria.IMPORTANCEStaphylococcus aureus is a leading agent of antibiotic-resistant bacterial infections in the world. S. aureus tightly controls metal homeostasis during infection, and disruption of metal uptake systems impairs staphylococcal virulence. We identified small molecules that interfere with metal handling in S. aureus to develop chemical probes to investigate metallobiology in this organism. Compound VU0026921 was identified as a small molecule that kills S. aureus both aerobically and anaerobically. The activity of VU0026921 is modulated by metal supplementation, is enhanced by genetic inactivation of Mn homeostasis genes, and correlates with increased cellular reactive oxygen species. Treatment with VU0026921 causes accumulation of multiple metals within S. aureus cells and concomitant upregulation of genes involved in metal detoxification. This work defines a small-molecule probe for further defining the role of metal toxicity in S. aureus and validates future antibiotic development targeting metal toxicity pathways.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/metabolismo , Homeostase/efeitos dos fármacos , Metais/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Citoplasma/química , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Staphylococcus aureus/metabolismo , Virulência
2.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744916

RESUMO

The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is critical to establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In medium containing CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism. To identify CP-responsive genes important during infection, we measured the abundance of select C. difficile transcripts in a mouse CDI model relative to expression in vitro Gene transcripts involved in selenium (Se)-dependent proline fermentation increased during infection and in response to CP. Increased proline fermentation gene transcription was dependent on CP Zn binding and proline availability, yet proline fermentation was only enhanced when Se was supplemented. CP-deficient mice could not restrain C. difficile proline fermentation-dependent growth, suggesting that CP-mediated Zn sequestration along with limited Se restricts C. difficile proline fermentation. Overall, these results highlight how C. difficile colonization depends on the availability of multiple nutrients whose abundances are dynamically influenced by the host response.IMPORTANCEClostridioides difficile infection (CDI) is the leading cause of postantibiotic nosocomial infection. Antibiotic therapy can be successful, yet up to one-third of individuals suffer from recurrent infections. Understanding the mechanisms controlling C. difficile colonization is paramount in designing novel treatments for primary and recurrent CDI. Here, we found that limiting nutrients control C. difficile metabolism during CDI and influence overall pathogen fitness. Specifically, the immune protein CP limits Zn availability and increases transcription of C. difficile genes necessary for proline fermentation. Paradoxically, this leads to reduced C. difficile proline fermentation. This reduced fermentation is due to limited availability of another nutrient required for proline fermentation, Se. Therefore, CP-mediated Zn limitation combined with low Se levels overall reduce C. difficile fitness in the intestines. These results emphasize the complexities of how nutrient availability influences C. difficile colonization and provide insight into critical metabolic processes that drive the pathogen's growth.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Metabolismo Energético , Complexo Antígeno L1 Leucocitário/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Zinco/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Complexo Antígeno L1 Leucocitário/genética , Prolina/metabolismo
3.
mBio ; 10(1)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808698

RESUMO

Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in S. aureus, MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of mntE transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the mntABC Mn uptake system. Inactivation of mntE or mntR leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of mntE results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for mntE are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, mntE and mntR are required for full virulence of S. aureus during infection, suggesting S. aureus experiences Mn toxicity in vivo Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of mntABC and induction of mntE, both of which are critical for S. aureus pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis.IMPORTANCE Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate Staphylococcus aureus utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of mntE leads to a significant reduction in S. aureus resistance to oxidative stress and S. aureus-mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and S. aureus virulence. Therefore, this establishes MntE as a potential target for development of anti-S. aureus therapeutics.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Manganês/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Manganês/toxicidade , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA