Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164458

RESUMO

Many symbionts supplement their host's diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly's salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is "hijacked" by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.IMPORTANCE Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector's MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects.


Assuntos
Ácido Fólico/biossíntese , Simbiose , Trypanosoma/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Wigglesworthia/metabolismo , Animais , Vias Biossintéticas , Feminino , Trato Gastrointestinal/parasitologia , Interações Hospedeiro-Parasita , Masculino
2.
Am J Med Genet A ; 176(5): 1258-1269, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681099

RESUMO

Organized and hosted by the Children's Tumor Foundation (CTF), the Neurofibromatosis (NF) conference is the premier annual gathering for clinicians and researchers interested in neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN). The 2016 edition constituted a blend of clinical and basic aspects of NF research that helped in clarifying different advances in the field. The incorporation of next generation sequencing is changing the way genetic diagnostics is performed for NF and related disorders, providing solutions to problems like genetic heterogeneity, overlapping clinical manifestations, or the presence of mosaicism. The transformation from plexiform neurofibroma (PNF) to malignant peripheral nerve sheath tumor (MPNST) is being clarified, along with new management and treatments for benign and premalignant tumors. Promising new cellular and in vivo models for understanding the musculoskeletal abnormalities in NF1, the development of NF2 or SWN associated schwannomas, and clarifying the cells that give rise to NF1-associated optic pathway glioma were presented. The interaction of neurofibromin and SPRED1 was described comprehensively, providing functional insight that will help in the interpretation of pathogenicity of certain missense variants identified in NF1 and Legius syndrome patients. Novel promising imaging techniques are being developed, as well as new integrative and holistic management models for patients that take into account psychological, social, and biological factors. Importantly, new therapeutic approaches for schwannomas, meningiomas, ependymomas, PNF, and MPNST are being pursued. This report highlights the major advances that were presented at the 2016 CTF NF conference.


Assuntos
Neurilemoma/diagnóstico , Neurilemoma/etiologia , Neurofibromatoses/diagnóstico , Neurofibromatoses/etiologia , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/etiologia , Neurofibromatose 2/diagnóstico , Neurofibromatose 2/etiologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/etiologia , Animais , Gerenciamento Clínico , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Técnicas de Diagnóstico Molecular , Neurilemoma/terapia , Neurofibromatoses/terapia , Neurofibromatose 1/terapia , Neurofibromatose 2/terapia , Neoplasias Cutâneas/terapia , Pesquisa Translacional Biomédica
3.
Proc Biol Sci ; 284(1857)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659447

RESUMO

Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetse's survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the host's nutritionally deficient diet. The absence of Wigglesworthia's contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.


Assuntos
Metaboloma , Simbiose , Transcriptoma , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/metabolismo , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Chaperonina 60/metabolismo , Feminino , Análise de Sequência de RNA , Moscas Tsé-Tsé/metabolismo , Complexo Vitamínico B/biossíntese
4.
Trends Parasitol ; 32(9): 739-749, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27236581

RESUMO

Several arthropod taxa live exclusively on vertebrate blood. This food source lacks essential metabolites required for the maintenance of metabolic homeostasis, and as such, these arthropods have formed symbioses with nutrient-supplementing microbes that facilitate their host's 'hematophagous' feeding ecology. Herein we highlight metabolic contributions of bacterial symbionts that reside within tsetse flies, bed bugs, lice, reduviid bugs, and ticks, with specific emphasis on B vitamin and cofactor biosynthesis. Importantly, these arthropods can transmit pathogens of medical and veterinary relevance and/or cause infestations that induce psychological and dermatological distress. Microbial metabolites, and the biochemical pathways that generate them, can serve as specific targets of novel control mechanisms aimed at disrupting the metabolism of hematophagous arthropods, thus combatting pest invasion and vector-borne pathogen transmission.


Assuntos
Vetores Artrópodes/microbiologia , Interações Hospedeiro-Parasita/fisiologia , Doenças Parasitárias/microbiologia , Doenças Parasitárias/prevenção & controle , Animais , Vetores Artrópodes/metabolismo , Sistemas de Liberação de Medicamentos , Homeostase/fisiologia , Doenças Parasitárias/transmissão , Simbiose
5.
Appl Environ Microbiol ; 80(18): 5844-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038091

RESUMO

The viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse's obligate symbiont, Wigglesworthia glossinidia. In this study, we examined the role of Wigglesworthia-produced vitamin B6 for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse's reproductive cycle. We found that expression of agat, as well as genes involved in vitamin B6 metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6 in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast or Wigglesworthia extracts. RNA interference-mediated knockdown of agat in wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated with agat short interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence of Wigglesworthia in tsetse is critical for the maintenance of proline homeostasis through vitamin B6 production.


Assuntos
Fertilidade , Homeostase , Prolina/metabolismo , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia , Vitamina B 6/metabolismo , Wigglesworthia/metabolismo , Animais , Perfilação da Expressão Gênica , Simbiose , Transaminases/biossíntese , Moscas Tsé-Tsé/metabolismo , Wigglesworthia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA