Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Steroids ; 142: 2-5, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-28939328

RESUMO

Cellular effects of glucocorticoids can be separated into classical transcriptional regulation via activation of the canonical nuclear glucocorticoid receptor and rapid actions mediated by activation of one or more putative membrane-associated glucocorticoid receptors that regulate both transcriptional and non-transcriptional signaling. Dexamethasone-bovine serum albumin (Dex-BSA) is one of several membrane-limited steroid receptor agonists. Dex-BSA and other steroid conjugates such as corticosterone-, estradiol- and testosterone-BSA have been used to study rapid steroid effects initiated by putative membrane receptors. The purity and stability of the steroid-BSA conjugate is crucial, therefore, since any steroid that is not bound to or that dissociates from the BSA conjugate could penetrate into the intracellular compartment and confound the experiment. We used fluorine NMR to determine if free Dex could be detected in a commercially available Dex-BSA dissolved in H2O. Non-covalently bound Dex was detected in the Dex-BSA solution, but the level of free Dex remained constant over time and with increasing temperature, indicating that the free Dex was not a result of instability of the Dex-BSA conjugate. The free Dex was lost when the Dex-BSA was denatured and subjected to dialysis, which suggested that it was trapped in the Dex-BSA three-dimensional structure and not covalently bound to the BSA. The purified, renatured Dex-BSA retained its rapid activity, which confirmed that the observed effects of Dex-BSA are not caused by non-covalently-bound Dex. Therefore, the Dex contaminant found in the Dex-BSA solution is likely to be tightly, but non-covalently, bound to BSA, and the Dex-BSA activity remains membrane-limited. Our findings indicate that Dex-BSA remains a suitable membrane-restricted glucocorticoid receptor agonist, but suggest that denaturing purification is a useful control for the study of membrane-initiated steroid-BSA actions.


Assuntos
Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Dexametasona/química , Dexametasona/farmacologia , Contaminação de Medicamentos , Hipotálamo/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Soroalbumina Bovina/química , Animais , Bovinos , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Dexametasona/análise , Estabilidade de Medicamentos , Hipotálamo/metabolismo , Camundongos , Ratos , Receptores de Glucocorticoides/metabolismo , Soroalbumina Bovina/análise
2.
Steroids ; 142: 55-64, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242167

RESUMO

Glucocorticoid binding to the intracellular glucocorticoid receptor (GR) stimulates the translocation of the GR from the cytosol to the nucleus, which leads to the transactivation or transrepression of gene transcription. However, multiple lines of evidence suggest that glucocorticoid signaling can also be initiated from the plasma membrane. Here, we provide evidence for membrane-initiated glucocorticoid signaling by a membrane-impermeant dexamethasone-bovine serum albumin (Dex-BSA) conjugate, which induced GR nuclear trafficking in hypothalamic neurons in vitro and in vivo. The GR nuclear translocation induced by a membrane-impermeant glucocorticoid suggests trafficking of an unliganded GR. The membrane-initiated GR trafficking was not blocked by inhibiting ERK MAPK, p38 MAPK, PKA, Akt, Src kinase, or calcium signaling, but was inhibited by Akt activation. Short-term exposure of hypothalamic neurons to dexamethasone (Dex) activated the glucocorticoid response element (GRE), suggesting transcriptional transactivation, whereas exposure to the Dex-BSA conjugate failed to activate the GRE, suggesting differential transcriptional activity of the liganded compared to the unliganded GR. Microarray analysis revealed divergent transcriptional regulation by Dex-BSA compared to Dex. Together, our data suggest that signaling from a putative membrane glucocorticoid receptor induces the trafficking of unliganded GR to the nucleus, which elicits a pattern of gene transcription that differs from that of the liganded receptor. The differential transcriptional signaling by liganded and unliganded receptors may contribute to the broad range of genetic regulation by glucocorticoids, and may help explain some of the different off-target actions of glucocorticoid drugs.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Dexametasona/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Bovinos , Células Cultivadas , Dexametasona/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
3.
Int Rev Neurobiol ; 125: 163-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26638767

RESUMO

The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus. Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems. Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function. Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C. The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).


Assuntos
Endocanabinoides/fisiologia , Sistemas Neurossecretores/fisiologia , Endocanabinoides/farmacologia , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA