Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919671

RESUMO

MicroRNAs (miRNAs) expressed in the hypothalamus are capable of regulating energy balance and peripheral metabolism by inhibiting translation of target messenger RNAs (mRNAs). Hypothalamic insulin resistance is known to precede that in the periphery, thus a critical unanswered question is whether central insulin resistance creates a specific hypothalamic miRNA signature that can be identified and targeted. Here we show that miR-1983, a unique miRNA, is upregulated in vitro in 2 insulin-resistant immortalized hypothalamic neuronal neuropeptide Y-expressing models, and in vivo in hyperinsulinemic mice, with a concomitant decrease of insulin receptor ß subunit protein, a target of miR-1983. Importantly, we demonstrate that miR-1983 is detectable in human blood serum and that its levels significantly correlate with blood insulin and the homeostatic model assessment of insulin resistance. Levels of miR-1983 are normalized with metformin exposure in mouse hypothalamic neuronal cell culture. Our findings provide evidence for miR-1983 as a unique biomarker of cellular insulin resistance, and a potential therapeutic target for prevention of human metabolic disease.


Assuntos
Hipotálamo/metabolismo , Insulina/farmacologia , Metformina/farmacologia , MicroRNAs/genética , Receptor de Insulina/genética , Adulto , Animais , Linhagem Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Hipotálamo/citologia , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , MicroRNAs/sangue , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/sangue , Obesidade/genética , Obesidade/metabolismo , Receptor de Insulina/metabolismo
2.
Mol Pharmacol ; 96(4): 515-525, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31427400

RESUMO

ORKAMBI, a combination of the corrector, lumacaftor, and the potentiator, ivacaftor, partially rescues the defective processing and anion channel activity conferred by the major cystic fibrosis-causing mutation, F508del, in in vitro studies. Clinically, the improvement in lung function after ORKAMBI treatment is modest and variable, prompting the search for complementary interventions. As our previous work identified a positive effect of arginine-dependent nitric oxide signaling on residual F508del-Cftr function in murine intestinal epithelium, we were prompted to determine whether strategies aimed at increasing arginine would enhance F508del-cystic fibrosis transmembrane conductance regulator (CFTR) channel activity in patient-derived airway epithelia. Now, we show that the addition of arginine together with inhibition of intracellular arginase activity increased cytosolic nitric oxide and enhanced the rescue effect of ORKAMBI on F508del-CFTR-mediated chloride conductance at the cell surface of patient-derived bronchial and nasal epithelial cultures. Interestingly, arginine addition plus arginase inhibition also enhanced ORKAMBI-mediated increases in ciliary beat frequency and mucociliary movement, two in vitro CF phenotypes that are downstream of the channel defect. This work suggests that strategies to manipulate the arginine-nitric oxide pathway in combination with CFTR modulators may lead to improved clinical outcomes. SIGNIFICANCE STATEMENT: These proof-of-concept studies highlight the potential to boost the response to cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators, lumacaftor and ivacaftor, in patient-derived airway tissues expressing the major CF-causing mutant, F508del-CFTR, by enhancing other regulatory pathways. In this case, we observed enhancement of pharmacologically rescued F508del-CFTR by arginine-dependent, nitric oxide signaling through inhibition of endogenous arginase activity.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Arginase/antagonistas & inibidores , Arginina/metabolismo , Benzodioxóis/farmacologia , Fibrose Cística/metabolismo , Óxido Nítrico/metabolismo , Quinolonas/farmacologia , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citosol/metabolismo , Combinação de Medicamentos , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Mutação , Nariz/citologia , Nariz/efeitos dos fármacos
3.
J Neuroendocrinol ; 31(1): e12678, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30582235

RESUMO

The links between obesity, inflammation and insulin resistance, which are all key characteristics of type 2 diabetes mellitus, are yet to be delineated in the brain. One of the key neuroinflammatory proteins detected in the hypothalamus with over-nutrition is tumour necrosis factor (TNF)α. Using immortalised embryonic rat and mouse hypothalamic cell lines (rHypoE-7 and mHypoE-46) that express orexigenic neuropeptide Y and agouti-related peptide, we investigated changes in insulin signalling and inflammatory gene marker mRNA expression after TNFα exposure. A quantitative polymerase chain reaction array of 84 inflammatory markers (cytokines, chemokines and receptors) demonstrated an increase in the expression of multiple genes encoding inflammatory markers upon exposure to 100 ng mL-1 TNFα for 4 hours. Furthermore, neurones pre-exposed to TNFα (50 ng mL-1 ) for 6 or 16 hours exhibited a significant reduction in phosphorylated Akt compared to control after insulin treatment, indicating the attenuation of insulin signalling. mRNA expression of insulin signalling-related genes was also decreased with exposure to TNFα. TNFα significantly increased mRNA expression of IκBα, Tnfrsf1a and IL6 at 4 and 24 hours, activating a pro-inflammatory state. An inhibitor study using an inhibitor of nuclear factor kappa B kinase subunit ß (IKK-ß) inhibitor, PS1145, demonstrated that TNFα-induced neuroinflammatory marker expression occurs through the IKK-ß/nuclear factor-kappa B pathway, whereas oleate, a monounsaturated fatty acid, had no effect on inflammatory markers. To test the efficacy of anti-inflammatory treatment to reverse insulin resistance, neurones were treated with TNFα and PS1145, which did not significantly restore the TNFα-induced changes in cellular insulin sensitivity, indicating that an alternative pathway may be involved. In conclusion, exposure to the inflammatory cytokine TNFα causes cellular insulin resistance and inflammation marker expression in the rHypoE-7 and mHypoE-46 neurones, consistent with effects seen with TNFα in peripheral tissues. It also mimics insulin- and palmitate-induced insulin resistance in hypothalamic neurones. The present study provides further evidence that altered central energy metabolism may be caused by obesity-induced cytokine expression.


Assuntos
Encefalite/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina/fisiologia , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Linhagem Celular , Encefalite/induzido quimicamente , Regulação da Expressão Gênica , Hipotálamo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/administração & dosagem
4.
Front Neuroendocrinol ; 36: 130-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223866

RESUMO

Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Animais , Linhagem Celular , Hipotálamo/citologia , Neurônios/citologia , Neuropeptídeos/fisiologia
5.
J Neuroinflammation ; 11: 60, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24674717

RESUMO

BACKGROUND: Overnutrition and the ensuing hypothalamic inflammation is a major perpetuating factor in the development of metabolic diseases, such as obesity and diabetes. Inflamed neurons of the CNS fail to properly regulate energy homeostasis leading to pathogenic changes in glucose handling, feeding, and body weight. Hypothalamic neurons are particularly sensitive to pro-inflammatory signals derived locally and peripherally, and it is these neurons that become inflamed first upon high fat feeding. Given the prevalence of metabolic disease, efforts are underway to identify therapeutic targets for this inflammatory state. At least in the periphery, omega-3 fatty acids and their receptor, G-protein coupled receptor 120 (GPR120), have emerged as putative targets. The role for GPR120 in the hypothalamus or CNS in general is poorly understood. METHODS: Here we introduce a novel, immortalized cell model derived from the rat hypothalamus, rHypoE-7, to study GPR120 activation at the level of the individual neuron. Gene expression levels of pro-inflammatory cytokines were studied by quantitative reverse transcriptase-PCR (qRT-PCR) upon exposure to tumor necrosis factor α (TNFα) treatment in the presence or absence of the polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA). Signal transduction pathway involvement was also studied using phospho-specific antibodies to key proteins by western blot analysis. RESULTS: Importantly, rHypoE-7 cells exhibit a transcriptional and translational inflammatory response upon exposure to TNFα and express abundant levels of GPR120, which is functionally responsive to DHA. DHA pretreatment prevents the inflammatory state and this effect was inhibited by the reduction of endogenous GPR120 levels. GPR120 activates both AKT (protein kinase b) and ERK (extracellular signal-regulated kinase); however, the anti-inflammatory action of this omega-3 fatty acid (FA) receptor is AKT- and ERK-independent and likely involves the GPR120-transforming growth factor-ß-activated kinase 1 binding protein (TAB1) interaction as identified in the periphery. CONCLUSIONS: Taken together, GPR120 is functionally active in the hypothalamic neuronal line, rHypoE-7, wherein it mediates the anti-inflammatory actions of DHA to reduce the inflammatory response to TNFα.


Assuntos
Anti-Inflamatórios/farmacologia , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Transformada , Ácidos Docosa-Hexaenoicos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hipotálamo/citologia , Proteínas I-kappa B/metabolismo , Imunoprecipitação , Metilaminas/farmacologia , Propionatos/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA