Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Int Med ; 9(2): 98-113, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34497749

RESUMO

BACKGROUND AND OBJECTIVE: HuangZhi YiShen Capsule (HZYS) is a Chinese patent herbal drug that protects kidney function in diabetic kidney disease (DKD) patients. However, the pharmacologic mechanisms of HZYS remain unclear. This study would use network pharmacology to explore the pharmacologic mechanisms of HZYS. METHODS: Chemical constituents of HZYS were obtained through the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and literature search. Potential targets of HZYS were identified by using the TCMSP and the SwissTarget Prediction databases. DKD-related target genes were collected by using the Online Mendelian Inheritance in Man, Therapeutic Target Database, GeneCards, DisGeNET, and Drugbank databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to further explore the mechanisms of HZYS in treating DKD. Molecular docking was conducted to verify the potential interactions between the prime compounds and the hub genes. RESULTS: 179 active compounds and 620 target genes were obtained, and 571 common targets were considered potential therapeutic targets. The top 10 main active compounds of HZYS were heparin, quercetin, kaempferol, luteolin, methyl14-methylpentadecanoate, methyl (Z)-11-hexadecenoate, 17-hydroxycorticosterone, 4-pregnene-17α, 20ß, 21-triol-3, 11-dione, wogonin, and hydroxyecdysone. Hub signaling pathways by which HZYS treating DKD were PI3K-Akt, MAPK, AGE-RAGE in diabetic complications, TNF, and apoptosis. The top 10 target genes associated with these pathways were IL6, MAPK1, AKT1, RELA, BCL2, JUN, MAPK3, MAP2K1, CASP3, and TNF. Quercetin and Luteolin were verified to have good binding capability with the hub potential targets IL6, MAPK1, AKT1 through molecular docking. CONCLUSION: HZYS appeared to treat DKD by regulating the inflammatory, oxidative stress, apoptotic, and fibrosis signaling pathways. This study provided a novel perspective for further research of HZYS.

2.
Clin Exp Pharmacol Physiol ; 42(6): 662-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25867602

RESUMO

Inflammation, fibrosis, and lipid disorder are essential promoters in the pathogenesis of diabetic kidney injury in diabetes mellitus type 2. Berberine (BBR) has been reported to have beneficial effects on diabetic nephropathy, but its action mechanism is still unclear. The present study was designed to elucidate the therapeutic mechanism of BBR in a type 2 diabetic nephropathy rat model induced by a high-fat diet and low-dose streptozotocin injection. The diabetic rats were treated with or without BBR by gavage for 20 weeks and examined by serology, 24-h albuminuria, histology, immunohistochemistry, and molecular analyses. Results showed that treatment with BBR significantly reduced serum levels of blood glucose and lipids, inhibited urinary excretion of albumin, and attenuated renal histological injuries in diabetic rats. Berberine treatment also inhibited renal inflammation, which was associated with inactivation of nuclear factor kappa-light-chain-enhancer of activated B-cell signalling. As a result, the upregulation of pro-inflammatory cytokines (interleukin-1ß, tumour necrosis factor-α) and chemokine (monocyte chemotactic protein-1) was blocked. In addition, BBR treatment also inactivated transforming growth factor-ß/Smad3 signalling and suppressed renal fibrosis, including expression of fibronectin, collagen I, and collagen IV. The present study reveals that BBR is a therapeutic agent for attenuating type 2 diabetic nephropathy by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cell-driven renal inflammation and transforming growth factor-ß/Smad3 signalling pathway.


Assuntos
Berberina/uso terapêutico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/prevenção & controle , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Animais , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA