RESUMO
Acute kidney injury (AKI) is a global public health concern with high mortality and morbidity. In ischemic-reperfusion injury (IRI), a main cause of AKI, the brush border membrane of S3 proximal tubules (PT) is lost to the tubular lumen. How injured tubules reconstitute lost membrane lipids during renal recovery is not known. Here, we identified Mfsd2a, a sodium-dependent lysophosphatidylcholine (LPC) transporter, to be expressed specifically in the basolateral membrane of S3 PT. Using an in vivo activity probe for Mfsd2a, transport activity was found to be specific to the S3 PT. Mice with haploinsufficiency of Mfsd2a exhibited delayed recovery of renal function after acute IRI, with depressed urine osmolality and elevated levels of histological markers of damage, fibrosis, and inflammation, findings corroborated by transcriptomic analysis. Lipidomics revealed a deficiency in docosahexaenoic acid (DHA) containing phospholipids in Mfsd2a haploinsufficiency. Treatment of Mfsd2a haploinsufficient mice with LPC-DHA improved renal function and reduced markers of injury, fibrosis, and inflammation. Additionally, LPC-DHA treatment restored S3 brush border membrane architecture and normalized DHA-containing phospholipid content. These findings indicate that Mfsd2a-mediated transport of LPC-DHA is limiting for renal recovery after AKI and suggest that LPC-DHA could be a promising dietary supplement for improving recovery following AKI.
Assuntos
Injúria Renal Aguda , Simportadores , Camundongos , Animais , Proteínas de Membrana Transportadoras , Ácidos Docosa-Hexaenoicos , Fosfolipídeos , Rim/fisiologiaRESUMO
Patients with autosomal recessive microcephaly 15 caused by deficiency in the sodium-dependent lysophosphatidylcholine (LPC) transporter major facilitator superfamily domain-containing 2a (Mfsd2a) present with both microcephaly and hypomyelination, suggesting an important role for LPC uptake by oligodendrocytes in the process of myelination. Here we demonstrate that Mfsd2a is specifically expressed in oligodendrocyte precursor cells (OPCs) and is critical for oligodendrocyte development. Single-cell sequencing of the oligodendrocyte lineage revealed that OPCs from OPC-specific Mfsd2a-KO mice (2aOKO mice) underwent precocious differentiation into immature oligodendrocytes and impaired maturation into myelinating oligodendrocytes, correlating with postnatal brain hypomyelination. 2aOKO mice did not exhibit microcephaly, a finding consistent with the notion that microcephaly is the consequence of an absence of LPC uptake at the blood-brain barrier rather than a deficiency in OPCs. Lipidomic analysis showed that OPCs and iOLs from 2aOKO mice had significantly decreased levels of phospholipids containing omega-3 fatty acids, with a corresponding increase in unsaturated fatty acids, the latter being products of de novo synthesis governed by Srebp-1. RNA-Seq indicated activation of the Srebp-1 pathway and defective expression of regulators of oligodendrocyte development. Taken together, these findings indicate that the transport of LPCs by Mfsd2a in OPCs is important for maintaining OPC state to regulate postnatal brain myelination.
Assuntos
Ácidos Graxos Ômega-3 , Microcefalia , Simportadores , Animais , Camundongos , Microcefalia/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linhagem da Célula , Simportadores/metabolismo , Camundongos Knockout , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Oligodendroglia/metabolismo , Diferenciação CelularRESUMO
The bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E. faecalis encodes two mprF paralogs, MprF2 plays a dominant role in conferring resistance to killing by the CAMP human ß-defensin 2 (hBD-2) in E. faecalis strain OG1RF. The goal of the current study is to understand the broader lipidomic and functional roles of E. faecalis mprF. We analyzed the lipid profiles of parental wild-type and mprF mutant strains and show that while ΔmprF2 and ΔmprF1 ΔmprF2 mutants completely lacked cationic lysyl-phosphatidylglycerol (L-PG), the ΔmprF1 mutant synthesized ~70% of L-PG compared to the parent. Unexpectedly, we also observed a significant reduction of PG in ΔmprF2 and ΔmprF1 ΔmprF2. In the mprF mutants, particularly ΔmprF1 ΔmprF2, the decrease in L-PG and phosphatidylglycerol (PG) is compensated by an increase in a phosphorus-containing lipid, glycerophospho-diglucosyl-diacylglycerol (GPDGDAG), and D-ala-GPDGDAG. These changes were accompanied by a downregulation of de novo fatty acid biosynthesis and an accumulation of long-chain acyl-acyl carrier proteins (long-chain acyl-ACPs), suggesting that the suppression of fatty acid biosynthesis was mediated by the transcriptional repressor FabT. Growth in chemically defined media lacking fatty acids revealed severe growth defects in the ΔmprF1 ΔmprF2 mutant strain, but not the single mutants, which was partially rescued through supplementation with palmitic and stearic acids. Changes in lipid homeostasis correlated with lower membrane fluidity, impaired protein secretion, and increased biofilm formation in both ΔmprF2 and ΔmprF1 ΔmprF2, compared to the wild type and ΔmprF1. Collectively, our findings reveal a previously unappreciated role for mprF in global lipid regulation and cellular physiology, which could facilitate the development of novel therapeutics targeting MprF. IMPORTANCE The cell membrane plays a pivotal role in protecting bacteria against external threats, such as antibiotics. Cationic phospholipids such as lysyl-phosphatidyglycerol (L-PG) resist the action of cationic antimicrobial peptides through electrostatic repulsion. Here we demonstrate that L-PG depletion has several unexpected consequences in Enterococcus faecalis, including a reduction of phosphatidylglycerol (PG), enrichment of a phosphorus-containing lipid, reduced fatty acid synthesis accompanied by an accumulation of long-chain acyl-acyl carrier proteins (long chain acyl-ACPs), lower membrane fluidity, and impaired secretion. These changes are not deleterious to the organism as long as exogenous fatty acids are available for uptake from the culture medium. Our findings suggest an adaptive mechanism involving compensatory changes across the entire lipidome upon removal of a single phospholipid modification. Such adaptations must be considered when devising antimicrobial strategies that target membrane lipids.
Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Enterococcus faecalis/metabolismo , Farmacorresistência Bacteriana , Fosfolipídeos/metabolismo , Anti-Infecciosos/metabolismo , Ácidos Graxos/metabolismo , Fosfatidilgliceróis/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cátions/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
Background: Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium-mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods: 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 âmT for 10 âmin) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results: Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi â+ âPCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion: The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article: Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.
RESUMO
Maternal hyperglycemia is associated with disrupted transplacental arachidonic acid (AA) supply and eicosanoid synthesis, which contribute to adverse pregnancy outcomes. Since placental inositol is lowered with increasing glycemia, and since myo-inositol appears a promising intervention for gestational diabetes, we hypothesized that myo-inositol might rectify glucose-induced perturbations in placental AA metabolism. Term placental explants (n = 19) from women who underwent a mid-gestation oral glucose-tolerance-test were cultured with 13C-AA for 48 h in media containing glucose (5, 10 or 17 mM) and myo-inositol (0.3 or 60 µM). Newly synthesized 13C-AA-lipids were quantified by liquid-chromatography-mass-spectrometry. Increasing maternal fasting glycemia was associated with decreased proportions of 13C-AA-phosphatidyl-ethanolamines (PE, PE-P), but increased proportions of 13C-AA-triacylglycerides (TGs) relative to total placental 13C-AA lipids. This suggests altered placental AA compartmentalization towards storage and away from pools utilized for eicosanoid production and fetal AA supply. Compared to controls (5 mM glucose), 10 mM glucose treatment decreased the amount of four 13C-AA-phospholipids and eleven 13C-AA-TGs, whilst 17 mM glucose increased 13C-AA-PC-40:8 and 13C-AA-LPC. Glucose-induced alterations in all 13C-AA lipids (except PE-P-38:4) were attenuated by concurrent 60 µM myo-inositol treatment. Myo-inositol therefore rectifies some glucose-induced effects, but further studies are required to determine if maternal myo-inositol supplementation could reduce AA-associated pregnancy complications.
Assuntos
Diabetes Gestacional , Placenta , Ácido Araquidônico/farmacologia , Diabetes Gestacional/induzido quimicamente , Etanolaminas , Feminino , Glucose/farmacologia , Humanos , Inositol/efeitos adversos , Fosfolipídeos , Placenta/metabolismo , Gravidez , Resultado da GravidezRESUMO
Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.
Assuntos
Insuficiência Adrenal/tratamento farmacológico , Aldeído Liases/metabolismo , Suplementos Nutricionais , Linfopenia/tratamento farmacológico , Nefrose/tratamento farmacológico , Vitamina B 6/administração & dosagem , Insuficiência Adrenal/genética , Aldeído Liases/química , Aldeído Liases/genética , Biomarcadores/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Linfopenia/genética , Mutação , Nefrose/genética , Fosfatos , SíndromeRESUMO
INTRODUCTION: Food and dietary ingredients have significant effects on metabolism and health. OBJECTIVE: To evaluate whether and how different diets affected the serum lipidomic profile of dogs. METHODS: Sixteen healthy beagles were fed a commercial dry diet for 3 months (control diet). After an overnight fasting period, a blood sample was taken for serum lipidomic profile analysis, and each dog was then randomly assigned to one of two groups. Group 1 was fed a commercial diet (Diet 1) and group 2 was fed a self-made, balanced diet supplemented with linseed oil and salmon oil (Diet 2) for 3 months. After an overnight fasting period, a blood sample was taken from each dog. Serum cholesterol and triacylglycerol analyses were performed and the serum lipidomic profiles were analyzed using targeted liquid chromatography-mass spectrometry. RESULTS: Dogs fed the supplemented self-made diet (Diet 2) had significantly higher omega-3 fatty acid-containing lipids species and significantly lower saturated and mono- and di-unsaturated lipid species. Concentrations of sphingosine 1-phosphate species S1P d16:1 and S1P d17:1 were significantly increased after feeding Diet 2. CONCLUSION: This study found that different diets had significant effects on the dog's serum lipidomic profile. Therefore, in studies that include lipidomic analyses, diet should be included as a confounding factor.
Assuntos
Dieta , Lipídeos/sangue , Animais , Colesterol/sangue , Cromatografia Líquida de Alta Pressão , Dieta/veterinária , Cães , Óleos de Peixe/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Lisofosfolipídeos/sangue , Masculino , Espectrometria de Massas , Análise de Componente Principal , Esfingosina/análogos & derivados , Esfingosina/sangue , Triglicerídeos/sangueRESUMO
We postulate that myo-inositol, a proposed intervention for gestational-diabetes, affects transplacental lipid supply to the fetus. We investigated the effect of myo-inositol on fatty-acid processing in human placental-explants from uncomplicated pregnancies. Explants were incubated with 13C-labeled palmitic-acid, 13C-oleic-acid and 13C-docosahexaenoic-acid across a range of myo-inositol concentrations for 24 h and 48 h. The incorporation of labeled-fatty-acids into individual lipids was quantified by liquid-chromatography-mass-spectrometry. At 24 h, myo-inositol increased the amount of 13C-palmitic-acid and 13C-oleic-acid labeled lipids (median fold-change relative to control=1). Significant effects were seen with 30 µM myo-inositol (physiological) for 13C-palmitic-acid-lysophosphatidylcholines (1.26) and 13C-palmitic-acid-phosphatidylethanolamines (1.17). At 48 h, myo-inositol addition increased 13C-oleic-acid-lipids but decreased 13C-palmitic-acid and 13C-docosahexaenoic-acid lipids. Significant effects were seen with 30 µM myo-inositol for 13C-oleic-acid-phosphatidylcholines (1.25), 13C-oleic-acid-phosphatidylethanolamines (1.37) and 13C-oleic-acid-triacylglycerols (1.32) and with 100 µM myo-inositol for 13C-docosahexaenoic-acid-triacylglycerols (0.78). Lipids labeled with the same 13C-fatty-acid showed similar responses when tested at the same time-point, suggesting myo-inositol alters upstream processes such as fatty-acid uptake or activation. Myo-inositol supplementation may alter placental lipid physiology with unknown clinical consequences.
RESUMO
Hidden Markov models representing 167 protein sequence families were used to infer the presence or absence of homologs within the transcriptomes of 183 algal species/strains. Statistical analyses of the distribution of HMM hits across major clades of algae, or at branch points on the phylogenetic tree of 98 chlorophytes, confirmed and extended known cases of metabolic loss and gain, most notably the loss of the mevalonate pathway for terpenoid synthesis in green algae but not, as we show here, in the streptophyte algae. Evidence for novel events was found as well, most remarkably in the recurrent and coordinated gain or loss of enzymes for the glyoxylate shunt. We find, as well, a curious pattern of retention (or re-gain) of HMG-CoA synthase in chlorophytes that have otherwise lost the mevalonate pathway, suggesting a novel, co-opted function for this enzyme in select lineages. Finally, we find striking, phylogenetically linked distributions of coding sequences for three pathways that synthesize the major membrane lipid phosphatidylcholine, and a complementary phylogenetic distribution pattern for the non-phospholipid DGTS (diacyl-glyceryl-trimethylhomoserine). Mass spectrometric analysis of lipids from 25 species was used to validate the inference of DGTS synthesis from sequence data.
Assuntos
Clorófitas/genética , Estreptófitas/genética , Butadienos/metabolismo , Clorófitas/metabolismo , Perfilação da Expressão Gênica , Glioxilatos/metabolismo , Hemiterpenos/metabolismo , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Fosfatidilcolinas/metabolismo , Filogenia , Estreptófitas/metabolismo , Terpenos/metabolismoRESUMO
Increasingly, evidence is accumulating pointing at a protective role of a healthy diet at decreasing the risk of Alzheimer's disease. To test the effectiveness of nutritional components, the following food-derived compounds: curcumin alone (curcumin), curcumin combined with (-)epigallocatechin-3-gallate (EGCG), docosahexaenoic acid (DHA) and α-lipoic acid (ALA) (curcuminâ¯+â¯EDA), or a combination of EGCG, DHA and ALA (EDA) were assessed in male Tg2576 transgenic mice on amyloid plaque load, amyloid levels (Aß40/Aß42, but not oligomers due to tissue limitations), microglial activation and memory using the contextual and cued fear conditioning test. The combination diet EDA, resulted in the strongest reduction of amyloid plaque load in both the cortical (pâ¯<â¯.0001) and hippocampal (pâ¯<â¯.0001) areas of the Tg2576 mouse brain, along with lower Aß40/Aß42 levels in the frontal cortex (pâ¯=â¯.000129 and pâ¯=â¯.000039, respectively) and Aß42 levels in the temporal lobe (pâ¯=â¯.000082). A curcumin only diet was shown to lower amyloid plaque load (pâ¯=â¯.028), but when combined with EGCG, DHA and ALA did not result in further decreases in amyloid plaque load. The EDA combination group showed the most prominent decrease in microglial activation (number of microglia around plaques: pâ¯<â¯.05 and pâ¯<â¯.0001, respectively, for the cortex and hippocampus). Analysing the hippocampal associated contextual fear conditioning revealed that both the curcumin+EDA (pâ¯<â¯.0001) and EDA groups (pâ¯=â¯.001) spent increased time on freezing compared to the control group. In addition, the curcumin+EDA group showed a significant increase in time spent freezing compared with the curcumin only group. In the amygdala associated cued test, all mice demonstrated the ability to associate the conditioned stimulus with the unconditioned stimulus as evidenced by a significant increase in freezing behaviour in response to the presentation of the cue (pâ¯<â¯.0001). Post-hoc analysis showed that only curcumin+EDA (pâ¯<â¯.0001) and EDA groups (pâ¯<â¯.0001) developed a significant increase in freezing during the cue presentation. The results from this study show that the combination of EGCG, DHA and ALA (EDA) appeared to have the most potent anti-inflammatory and neuroprotective effect. Our results also demonstrate that interactions between nutraceutical products might result in counterproductive outcomes, highlighting the fact that manufacturers of nutraceuticals containing multiple compounds should be careful not to claim additive or synergistic effects of their combination products in vivo without having tested it in animal models and/or human clinical trials.
Assuntos
Doença de Alzheimer , Dieta Saudável , Suplementos Nutricionais , Inflamação , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/administração & dosagem , Curcumina/administração & dosagem , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/administração & dosagem , Placa Amiloide/patologia , Ácido Tióctico/administração & dosagemRESUMO
The major facilitator superfamily domain-containing protein 2A (MFSD2A) is a constituent of the blood-brain barrier and functions to transport lysophosphatidylcholines (LPCs) into the central nervous system. LPCs such as that derived from docosahexanoic acid (DHA) are indispensable to neurogenesis and maintenance of neurons, yet cannot be synthesized within the brain and are dependent on MFSD2A for brain uptake. Recent studies have implicated MFSD2A mutations in lethal and non-lethal microcephaly syndromes, with the severity correlating to the residual activity of the transporter. We describe two siblings with shared parental ancestry, in whom we identified a homozygous missense mutation (c.1205C > A; p.Pro402His) in MFSD2A. Both affected individuals had microcephaly, hypotonia, appendicular spasticity, dystonia, strabismus, and global developmental delay. Neuroimaging revealed paucity of white matter with enlarged lateral ventricles. Plasma lysophosphatidylcholine (LPC) levels were elevated, reflecting reduced brain transport. Cell-based studies of the p.Pro402His mutant protein indicated complete loss of activity of the transporter despite the non-lethal, attenuated phenotype. The aggregate data of MFSD2A-associated genotypes and phenotypes suggest that additional factors, such as nutritional supplementation or modifying genetic factors, may modulate the severity of disease and call for consideration of treatment options for affected individuals.
Assuntos
Doenças Desmielinizantes/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Microcefalia/genética , Mutação de Sentido Incorreto , Proteínas Supressoras de Tumor/genética , Substituição de Aminoácidos , Animais , Transporte Biológico/genética , Barreira Hematoencefálica/metabolismo , Criança , Pré-Escolar , Doenças Desmielinizantes/metabolismo , Deficiências do Desenvolvimento/genética , Feminino , Células HEK293 , Homozigoto , Humanos , Metabolismo dos Lipídeos/genética , Lisofosfatidilcolinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microcefalia/metabolismo , Modelos Moleculares , Bainha de Mielina/metabolismo , Linhagem , Irmãos , Simportadores , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismoRESUMO
The major pathway by which the brain obtains essential omega-3 fatty acids from the circulation is through a sodium-dependent lysophosphatidylcholine (LPC) transporter (MFSD2A), expressed in the endothelium of the blood-brain barrier. Here we show that a homozygous mutation affecting a highly conserved MFSD2A residue (p.Ser339Leu) is associated with a progressive microcephaly syndrome characterized by intellectual disability, spasticity and absent speech. We show that the p.Ser339Leu alteration does not affect protein or cell surface expression but rather significantly reduces, although not completely abolishes, transporter activity. Notably, affected individuals displayed significantly increased plasma concentrations of LPCs containing mono- and polyunsaturated fatty acyl chains, indicative of reduced brain uptake, confirming the specificity of MFSD2A for LPCs having mono- and polyunsaturated fatty acyl chains. Together, these findings indicate an essential role for LPCs in human brain development and function and provide the first description of disease associated with aberrant brain LPC transport in humans.
Assuntos
Ácidos Graxos Ômega-3/metabolismo , Microcefalia/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Sequência de Bases , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Lisofosfatidilcolinas/sangue , Masculino , Microcefalia/sangue , Mutação de Sentido Incorreto , Linhagem , Análise de Sequência de DNA , Simportadores , SíndromeRESUMO
Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.
Assuntos
Encéfalo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Microcefalia/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Consanguinidade , Feminino , Genes Letais , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Masculino , Camundongos Knockout , Mutação de Sentido Incorreto , Simportadores , Síndrome , Peixe-ZebraRESUMO
Meibomian gland dysfunction (MGD) is a leading cause of evaporative dry eye and ocular discomfort characterized by an unstable tear film principally attributed to afflicted delivery of lipids to the ocular surface. Herein, we elucidated longitudinal tear lipid alterations associated with disease alleviation and symptom improvement in a cohort of MGD patients undergoing eyelid-warming treatment for 12 weeks. Remarkably, eyelid-warming resulted in stark reductions in lysophospholipids (P < 0.001 for lyso-plasmalogen phosphatidylethanolamine, lysophosphatidylcholine, and lysophosphatidylinositol), as well as numerous PUFA-containing diacylglyceride species in tears, accompanied by significant increases in several PUFA-containing phospholipids. These changes in tear lipidomes suggest that eyelid-warming leads to diminished activity of tear phospholipases that preferentially target PUFA-containing phospholipids. In addition, treatment led to appreciable increases (P < 0.001) in O-acyl-ω-hydroxy-FAs (OAHFAs), which are lipid amphiphiles critical to the maintenance of tear film stability. Longitudinal changes in the tear lipids aforementioned also significantly (P < 0.05) correlated with reduced rate of ocular evaporation and improvement in ocular symptoms. The foregoing data thus indicate that excess ocular surface phospholipase activity detrimental to tear film stability could be alleviated by eyelid warming alone without application of steroids and identify tear OAHFAs as suitable markers to monitor treatment response in MGD.
Assuntos
Síndromes do Olho Seco/metabolismo , Metabolismo dos Lipídeos , Glândulas Tarsais/metabolismo , Lágrimas/metabolismo , Síndromes do Olho Seco/terapia , Humanos , Hipertermia Induzida , Estudos Longitudinais , Glândulas Tarsais/fisiopatologia , MetabolomaRESUMO
Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as phospholipids and galactolipids, are very low in abundance. These low-abundance lipids constitute key intermediates in lipid biosynthesis. In this study, we applied multiple lipidomic approaches, including high-sensitivity and high-specificity multiple reaction monitoring, to comprehensively quantify individual lipid species in crude palm oil. We also established a new liquid chromatography-coupled mass spectrometry method that allows direct quantification of low-abundance galactolipids in palm oil without the need for sample pretreatment. As crude palm oil contains large amounts of neutral lipids, our direct-detection method circumvents many of the challenges encountered with conventional lipid quantification methods. This approach allows direct measurement of lipids with no hassle during sample preparation and is more accurate and precise compared with other methods.