Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 62: 104692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669395

RESUMO

There is a growing recognition that application of mechanistic approaches to understand cross-species shared molecular targets and pathway conservation in the context of hazard characterization, provide significant opportunities in risk assessment (RA) for both human health and environmental safety. Specifically, it has been recognized that a more comprehensive and reliable understanding of similarities and differences in biological pathways across a variety of species will better enable cross-species extrapolation of potential adverse toxicological effects. Ultimately, this would also advance the generation and use of mechanistic data for both human health and environmental RA. A workshop brought together representatives from industry, academia and government to discuss how to improve the use of existing data, and to generate new NAMs data to derive better mechanistic understanding between humans and environmentally-relevant species, ultimately resulting in holistic chemical safety decisions. Thanks to a thorough dialogue among all participants, key challenges, current gaps and research needs were identified, and potential solutions proposed. This discussion highlighted the common objective to progress toward more predictive, mechanistically based, data-driven and animal-free chemical safety assessments. Overall, the participants recognized that there is no single approach which would provide all the answers for bridging the gap between mechanism-based human health and environmental RA, but acknowledged we now have the incentive, tools and data availability to address this concept, maximizing the potential for improvements in both human health and environmental RA.


Assuntos
Meio Ambiente , Saúde Ambiental , Toxicologia/tendências , Animais , Segurança Química , Humanos , Medição de Risco/métodos , Especificidade da Espécie
2.
Toxicol Sci ; 150(2): 400-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26781513

RESUMO

Chemical toxicity testing is fast moving in a direction that relies increasingly on cell-basedin vitroassays anchored on toxicity pathways according to the toxicity testing in the 21st century vision. Identifying points of departure (POD) via these assays and revealing their mechanistic underpinnings via computational modeling of the relevant pathways are critical and challenging steps. Here we used doxorubicin (DOX) as a prototype chemical to study mitochondrial toxicity in human AC16 cells. Mitochondrial toxicity has been linked to cardiovascular risk of DOX, which has limited its clinical use as an antitumor drug. Ourin vitrostudy revealed a well-defined POD concentration of DOX below which adaptive induction of proliferator-activated receptor-γ coactivator-1α (PGC-1α) -mediated mitochondrial genes, including NRF-1, MnSOD, UCP2, and COX1, concurred with negligible changes in mitochondrial superoxide and cytotoxicity. At higher DOX concentrations adversity became significant with elevated superoxide and suppressed ATP levels. A computational model was formulated to simulate the PGC-1α-mediated transcriptional network comprising multiple negative feedback loops that underlie redox and bioenergetics homeostasis in the mitochondrion. The model recapitulated the transition phase from adaptive to adverse responses, supporting the notion that saturated induction of PGC-1α-mediated gene network underpins POD. The model further predicts (follow-up experiments verified) that silencing PGC-1α compromises the adaptive function of the transcriptional network, leading to disruption of mitochondria and cytotoxicity at lower DOX concentrations. In summary, our study demonstrates that combining pathway-focusedin vitroassays and computational simulation of relevant biochemical network is synergistic for understanding dose-response behaviors in the low-dose region and identifying POD.


Assuntos
Doxorrubicina/toxicidade , Redes Reguladoras de Genes/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Testes de Toxicidade/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA/genética , Testes de Toxicidade/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA