Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 21(21): 6582-91, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24021582

RESUMO

Optimization of a 7-azaindole-3-acetic acid CRTh2 receptor antagonist chemotype derived from high throughput screening furnished a highly selective compound NVP-QAV680 with low nM functional potency for inhibition of CRTh2 driven human eosinophil and Th2 lymphocyte activation in vitro. The molecule exhibited good oral bioavailability in the rat, combined with efficacy in rodent CRTh2-dependent mechanistic and allergic disease models and was suitable for clinical development.


Assuntos
Indolizinas/química , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Administração Oral , Animais , Células CHO , Cricetinae , Cricetulus , Dermatite de Contato/tratamento farmacológico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Meia-Vida , Humanos , Hipersensibilidade/tratamento farmacológico , Indolizinas/farmacocinética , Indolizinas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Relação Estrutura-Atividade , Células Th2/imunologia , Células Th2/metabolismo
2.
Methods Mol Biol ; 356: 221-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16988406

RESUMO

Mammalian signal transduction occurs in the context of multiprotein complexes, yet currently available drug discovery strategies do not reflect this fact. We present a strategy for screening drugs and targets in living human cells by utilizing high content protein-fragment complementation assays. Synthetic fragments of a mutant fluorescent protein ("Venus" and/or enhanced yellow fluorescent protein) are used for protein-fragment complementation assay construction, allowing us to measure spatial and temporal changes in protein complexes in response to drugs that activate or inhibit particular pathways. Here we describe the utility of this novel strategy for high-throughput screening of known targets, and for screening previously undrugable targets and profiling drug leads for improved selectivity and safety.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Complexos Multiproteicos/metabolismo , Sobrevivência Celular , Relação Dose-Resposta a Droga , Humanos , Ligação Proteica , RNA Interferente Pequeno , Sensibilidade e Especificidade , Frações Subcelulares
3.
Methods Enzymol ; 407: 388-401, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16757340

RESUMO

Small GTPases of the Ras and Rho families are among the most studied signaling proteins and represent promising therapeutic targets for human neoplastic disease. Despite the high level of interest in these proteins, direct analysis of most aspects of Ras protein biology in living cells has not been possible, because much of the details of Ras signaling cannot be studied in vitro but requires simple cell-based assays. Here we describe a strategy for directly analyzing Ras signaling pathways in living cells using protein-fragment complementation assays (PCA) based on fragments of intensely fluorescent proteins. The assays allow for spatial and temporal analysis of protein complexes including those that form upstream and downstream from Ras proteins, as well as complexes of Ras proteins with regulator and effector proteins. We describe high-throughput quantitative microscopic methods to follow temporal changes in complex subcellular location and quantity (high-content assays). Spatial and temporal changes in response to perturbations (chemical, siRNA, hormones) allow for delineation of Ras signaling networks and a general and high-throughput approach to identify drugs that act directly or indirectly on Ras pathways.


Assuntos
Teste de Complementação Genética/métodos , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Transfecção/métodos
4.
Nat Chem Biol ; 2(6): 329-37, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16680159

RESUMO

We present a strategy for identifying off-target effects and hidden phenotypes of drugs by directly probing biochemical pathways that underlie therapeutic or toxic mechanisms in intact, living cells. High-content protein-fragment complementation assays (PCAs) were constructed with synthetic fragments of a mutant fluorescent protein ('Venus', EYFP or both), allowing us to measure spatial and temporal changes in protein complexes in response to drugs that activate or inhibit particular pathways. One hundred and seven different drugs from six therapeutic areas were screened against 49 different PCA reporters for ten cellular processes. This strategy reproduced known structure-function relationships and also predicted 'hidden,' potent antiproliferative activities for four drugs with novel mechanisms of action, including disruption of mitochondrial membrane potential. A simple algorithm identified a 25-assay panel that was highly predictive of antiproliferative activity, and the predictive power of this approach was confirmed with cross-validation tests. This study suggests a strategy for therapeutic discovery that identifies novel, unpredicted mechanisms of drug action and thereby enhances the productivity of drug-discovery research.


Assuntos
Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Luminescentes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Desenho de Fármacos , Genética , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/efeitos dos fármacos , Estrutura Molecular , Fenótipo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
5.
J Biol Chem ; 279(21): 22047-56, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15023993

RESUMO

The human TRPC6 channel was expressed in human embryonic kidney (HEK) cells, and activity was monitored using the giga-seal technique. Whole cell membrane currents with distinctive inward and outward rectification were activated by carbachol (CCh) in TRPC6-expressing cells, but not in lacZ-transfected controls. The effect of CCh was steeply dose-dependent with a K(0.5) of approximately 10 microm and a Hill coefficient of 3-4. A steep concentration-response relationship was also observed when TRPC6 activity was measured using a fluorescence-based imaging plate reader (FLIPR) assay for membrane depolarization. Ionomycin, thapsigargin, and dialysis of the cell with inositol 1,4,5-trisphosphate via the patch pipette had no effect on TRPC6 currents, but exogenous application of 1-oleoyl acetyl-sn-glycerol (OAG, 30-300 microm) produced a slow increase in channel activity. The PKC activator, phorbol 12-myristate 13-acetate (PMA, 0.5 microm) had no significant acute effect on TRPC6, or on the subsequent response to OAG. In contrast, the response to CCh was blocked >90% by PMA pretreatment. To further explore the role of DAG in receptor stimulation, TRPC6 currents were monitored following the sequential addition of CCh and OAG. Surprisingly, concentrations of CCh that produced little or no response in the absence of OAG, produced increases in TRPC6 currents in the presence of OAG that were larger than the sum of either agent alone. Likewise, the response to OAG was superadditive following prior stimulation of the cells with near threshold concentrations of CCh. Overall, these results suggest that generation of DAG alone may not fully account for activation of TRPC6, and that other receptor-mediated events act synergistically with DAG to stimulate channel activity. This synergy may explain, at least in part, the steep dose-response relationship observed for CCh-induced TRPC6 currents expressed in HEK cells.


Assuntos
Canais de Cálcio/metabolismo , Carbacol/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Agonistas Colinérgicos/farmacologia , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Ionomicina/farmacologia , Ionóforos/farmacologia , Cinética , Óperon Lac , Potenciais da Membrana , Ligação Proteica , Canais de Cátion TRPC , Canal de Cátion TRPC6 , Acetato de Tetradecanoilforbol , Tapsigargina/farmacologia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA