Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 16(1): 119, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693605

RESUMO

BACKGROUND: Bioconversion of D-galacturonic acid to galactaric (mucic) acid has previously been carried out in small scale (50-1000 mL) cultures, which produce tens of grams of galactaric acid. To obtain larger amounts of biologically produced galactaric acid, the process needed to be scaled up using a readily available technical substrate. Food grade pectin was selected as a readily available source of D-galacturonic acid for conversion to galactaric acid. RESULTS: We demonstrated that the process using Trichoderma reesei QM6a Δgar1 udh can be scaled up from 1 L to 10 and 250 L, replacing pure D-galacturonic acid with commercially available pectin. T. reesei produced 18 g L-1 galactaric acid from food-grade pectin (yield 1.00 g [g D-galacturonate consumed]-1) when grown at 1 L scale, 21 g L-1 galactaric acid (yield 1.11 g [g D-galacturonate consumed]-1) when grown at 10 L scale and 14 g L-1 galactaric acid (yield 0.77 g [g D-galacturonate consumed]-1) when grown at 250 L scale. Initial production rates were similar to those observed in 500 mL cultures with pure D-galacturonate as substrate. Approximately 2.8 kg galactaric acid was precipitated from the 250 L culture, representing a recovery of 77% of the galactaric acid in the supernatant. In addition to scaling up, we also demonstrated that the process could be scaled down to 4 mL for screening of production strains in 24-well plate format. Production of galactaric acid from pectin was assessed for three strains expressing uronate dehydrogenase under alternative promoters and up to 11 g L-1 galactaric acid were produced in the batch process. CONCLUSIONS: The process of producing galactaric acid by bioconversion with T. reesei was demonstrated to be equally efficient using pectin as it was with D-galacturonic acid. The 24-well plate batch process will be useful screening new constructs, but cannot replace process optimisation in bioreactors. Scaling up to 250 L demonstrated good reproducibility with the smaller scale but there was a loss in yield at 250 L which indicated that total biomass extraction and more efficient DSP would both be needed for a large scale process.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Pectinas/metabolismo , Açúcares Ácidos/metabolismo , Trichoderma/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Biomassa , Reatores Biológicos , Meios de Cultura/química , Ácidos Hexurônicos/metabolismo , Regiões Promotoras Genéticas , Açúcares Ácidos/análise , Açúcares Ácidos/isolamento & purificação , Trichoderma/crescimento & desenvolvimento
2.
BMC Biotechnol ; 10: 63, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20796274

RESUMO

BACKGROUND: The D-galacturonic acid derived from plant pectin can be converted into a variety of other chemicals which have potential use as chelators, clarifiers, preservatives and plastic precursors. Among these is the deoxy-keto acid derived from L-galactonic acid, keto-deoxy-L-galactonic acid or 3-deoxy-L-threo-hex-2-ulosonic acid. The keto-deoxy sugars have been found to be useful precursors for producing further derivatives. Keto-deoxy-L-galactonate is a natural intermediate in the fungal D-galacturonate metabolic pathway, and thus keto-deoxy-L-galactonate can be produced in a simple biological conversion. RESULTS: Keto-deoxy-L-galactonate (3-deoxy-L-threo-hex-2-ulosonate) accumulated in the culture supernatant when Trichoderma reesei Δlga1 and Aspergillus niger ΔgaaC were grown in the presence of D-galacturonate. Keto-deoxy-L-galactonate accumulated even if no metabolisable carbon source was present in the culture supernatant, but was enhanced when D-xylose was provided as a carbon and energy source. Up to 10.5 g keto-deoxy-L-galactonate l(-1) was produced from 20 g D-galacturonate l(-1) and A. niger ΔgaaC produced 15.0 g keto-deoxy-L-galactonate l(-1) from 20 g polygalacturonate l(-1), at yields of 0.4 to 1.0 g keto-deoxy-L-galactonate [g D-galacturonate consumed](-1). Keto-deoxy-L-galactonate accumulated to concentrations of 12 to 16 g l(-1) intracellularly in both producing organisms. This intracellular concentration was sustained throughout production in A. niger ΔgaaC, but decreased in T. reesei. CONCLUSIONS: Bioconversion of D-galacturonate to keto-deoxy-L-galactonate was achieved with both A. niger ΔgaaC and T. reesei Δlga1, although production (titre, volumetric and specific rates) was better with A. niger than T. reesei. A. niger was also able to produce keto-deoxy-L-galactonate directly from pectin or polygalacturonate demonstrating the feasibility of simultaneous hydrolysis and bioconversion. Although keto-deoxy-L-galactonate accumulated intracellularly, concentrations above ~12 g l(-1) were exported to the culture supernatant. Lysis may have contributed to the release of keto-deoxy-L-galactonate from T. reesei mycelia.


Assuntos
Aspergillus niger/metabolismo , Ácidos Hexurônicos/metabolismo , Microbiologia Industrial/métodos , Açúcares Ácidos/metabolismo , Trichoderma/metabolismo , Biotransformação , Pectinas/metabolismo
3.
Mycol Res ; 107(Pt 8): 949-56, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14531617

RESUMO

Rhodotorula mucilaginosa produces the siderophore rhodotorulic acid (RA) when grown in iron-limited conditions. R. mucilaginosa grew at rates between 0.10 and 0.19 h(-1) in iron-restricted conditions, depending on the carbon source, and at 0.23 h(-1) in iron-sufficient conditions. In bioreactors inoculated with iron-starved pre-cultures, initial specific growth rates in batch culture were dependent on the iron concentration. The critical dilution rate (Dcrit, at which steady state cultures cannot be sustained) in continuous cultures was also dependent on the iron concentration and was lower than mu(max) in batch culture. Sucrose was the best carbon source for RA production [287+/-11 micromol (g biomass)(-1)] and production could be further increased by supplementing the medium with the precursors acetate [460+/-13 micromol (g biomass)(-1)], ornithine [376+/-6 micromol (g biomass)(-1)], or both [539+/-15 micromol (g biomass)(-1)]. Citric acid was an effective suppresser of RA production. RA was produced in a growth rate dependent manner and was optimally produced at pH 6.5.


Assuntos
Piperazinas/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/metabolismo , Biomassa , Reatores Biológicos , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Sacarose/metabolismo
4.
Appl Environ Microbiol ; 69(6): 3600-6, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12788768

RESUMO

An assay to detect UO(2)(2+) complexation was developed based on the chrome azurol S (CAS) assay for siderophores (B. Schwyn and J. B. Neilands, Anal. Biochem. 160:47-56, 1987) and was used to investigate the ability of fungal metabolites to complex actinides. In this assay the discoloration of two dyed agars (one containing a CAS-Fe(3+) dye and the other containing a CAS-UO(2)(2+) dye) caused by ligands was quantified. The assay was tested by using the siderophore desferrioxamine B (DFO), and the results showed that there was a regular, reproducible relationship between discoloration and the amount of siderophore added. The ratio of the discoloration on the CAS-UO(2)(2+) agar to the discoloration on the CAS-Fe(3+) agar was independent of the amount of siderophore added. A total of 113 fungi and yeasts were isolated from three soil samples taken from the Peak District National Park. The fungi were screened for the production of UO(2)(2+) chelators by using the CAS-based assay and were also tested specifically for hydroxamate siderophore production by using the hydroxamate siderophore auxotroph Aureobacterium flavescens JG-9. This organism is highly sensitive to the presence of hydroxamate siderophores. However, the CAS-based assay was found to be less sensitive than the A. flavescens JG-9 assay. No significant difference between the results for each site for the two tests was found. Three isolates were selected for further study and were identified as two Pencillium species and a Mucor species. Our results show that the new assay can be effectively used to screen fungi for the production of UO(2)(2+) chelating ligands. We suggest that hydroxamate siderophores can be produced by mucoraceous fungi.


Assuntos
Desferroxamina/metabolismo , Hidroxibenzoatos/metabolismo , Indicadores e Reagentes/metabolismo , Mucor/metabolismo , Penicillium/metabolismo , Urânio/metabolismo , Actinomycetales/crescimento & desenvolvimento , Actinomycetales/metabolismo , Meios de Cultura , Ácidos Hidroxâmicos/metabolismo , Processamento de Imagem Assistida por Computador , Técnicas Microbiológicas , Mucor/classificação , Mucor/crescimento & desenvolvimento , Mucor/isolamento & purificação , Penicillium/classificação , Penicillium/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Sideróforos/metabolismo , Microbiologia do Solo , Urânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA